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Preface

You have in your hands an undergraduate text on fundamentals of electric

power engineering. This text reflects the experience of the first author in

teaching electric power engineering courses in the Electrical and Computer

Engineering Department of the University of Maryland College Park during

the past thirty-four years. These courses have constituted the educational

core of the electric power engineering program. This program was originally

established (in the early 1980s) with the financial support and sponsorship

of Baltimore Gas and Electric (BGE) Company, Potomac Electric Power

Company (PEPCO), Virginia Electric Power Company (VEPCO), Bech-

tel Corporation and General Electric (GE) Foundation. This program has

been designed as a sequence of senior elective courses in the area of electric

power engineering. This design has two main advantages. First, students

in such elective courses usually have strong interest in electric power and

are really motivated to learn the related material. Second, senior students

have already been exposed to fundamentals in electric and electronic cir-

cuits, electromagnetics and control theory. This opens the opportunity to

cover the material in power courses at sufficiently high level and with the

same mathematical and physical rigor which is now practiced in courses

on communication, control and electromagnetics. This text on fundamen-

tals of electric power engineering reflects this approach to teaching power

courses.

Electric power engineering has always been an integral part of electrical

engineering education. This is especially true nowadays in view of renewed

emphasis in the area of energy in general and electric power engineering in

particular. This textbook may provide a viable alternative to existing text-

books on the market by covering in one volume in a concise and rigorous

manner such topics as power systems, electrical machines and power elec-

vii
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tronics. For this reason, this book can be used for teaching three different

courses such as Power Systems, Electrical Machines and Power Electron-

ics. These power courses form the mainstream of electric power engineering

curriculum at most universities worldwide.

The book consists of three parts. The first part of the book deals with

the review of electric and magnetic circuits. This review stresses the topics

which nowadays are usually deemphasized (or ignored) in required circuits

and electromagnetics courses. Namely, the phasor diagrams for ac cir-

cuits and analysis of electric circuits with periodic non-sinusoidal sources

are stressed. Phasor diagrams have practically disappeared from circuit

courses and textbooks, while these diagrams are still very instrumental in

electric power engineering. Analysis of electric circuits with periodic non-

sinusoidal sources is very important in the study of steady-state operation

of power electronics converters. The frequency-domain and time-domain

techniques for such analysis are presented in the book. In the review of

magnetic circuits, a special emphasis is made on the analysis of magnetic

circuits with permanent magnets. This is justified, on the one hand, by

the proliferation of permanent magnets in power devices and, on the other

hand, by the insufficient discussion of this topic in the existing undergrad-

uate textbooks. Furthermore, the analysis of nonlinear magnetic circuits

and eddy current losses for circularly (or elliptically) polarized magnetic

fields are presented. The former is important because magnetic saturation

of ferromagnetic cores often occurs in power devices. The latter is of in-

terest because ferromagnetic cores of ac electric machines are subject to

rotating (not linearly polarized) magnetic fields.

The second part of the book can be used for teaching courses on power

systems and electrical machines. This part starts with a brief review of

the structure of power systems, analysis of three-phase circuits and the

discussion of ac power and power factor. Next, the analysis of faults in

power systems is presented. This analysis is first performed by using the

Thevenin theorem. Then, the concept of symmetrical components is in-

troduced and the sequence networks are derived. Finally, the analysis of

faults based on sequence networks is discussed. The next chapter deals with

transformers. Here, the design and principle of operation of transformers

are first considered along with the study of the ideal transformer. Then,

the equivalent circuit for a single-phase transformer is derived on the ba-

sis of equivalent mathematical transformation of coupled circuit equations

and the importance of leakage inductances (leakage reactances) is stressed.

Next, open-circuit and short-circuit tests are described as the experimen-
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tal means of determining parameters of equivalent circuits. The chapter

is concluded by the discussion of three-phase transformers. The following

chapter deals with synchronous generators. Here, the design and principle

of operation of synchronous generators with cylindrical rotors and salient

pole rotors are first considered. Then, the mathematical analysis of arma-

ture reaction magnetic fields of ideal cylindrical rotor generators is carried

out. The results of this analysis are used in the discussion of the design of

stator windings and in the computation of their synchronous reactance. It

is stressed that stator windings are designed as filters of spatial and tem-

poral harmonics. This is achieved due to their distributed nature, their

two-layer structure and the use of fractional pitch. Next, the two-reactance

theory of salient pole synchronous generators is presented. The chapter

is concluded by the derivation of formulas for the power of synchronous

generators and by the discussion of static stability of these generators as

well as of their performance when connected to an infinite bus. The next

chapter deals with the power flow analysis and dynamic (transient) stabil-

ity of power systems. Here, the nonlinear power flow equations are first

derived and then their numerical solutions by using Newton-Raphson and

continuation techniques are discussed. The analysis of the transient stabil-

ity is carried out by using the “swing” equation for mechanical motion of

rotors of synchronous generators. This equation is presented in the Hamil-

tonian form, which leads to the phase portrait of rotor dynamics. This

phase portrait results in a simple algebraic criterion for transient stability

of rotor dynamics which contains as a particular case the celebrated equal

area stability criterion. The last chapter of the second part deals with in-

duction machines. In the past, induction machines have mostly been used

as motors. However, recently induction machines have found applications

as generators in wind energy systems. First, the design and principle of

operation of induction machines is discussed. Then, by using the fact that

in the induction machines the electromagnetic coupling between the rotor

and stator windings is mostly realized through rotating magnetic fields, the

coupled circuit equations are derived. The equivalent mathematical trans-

formation of these coupled circuit equations leads to the equivalent electric

circuits for induction machines. The chapter is concluded by the discussion

of mechanical (torque-speed) characteristics of induction machines, which

reveal the possibility of frequency control of speed of induction motors.

The third part of the book deals with power electronics and it consists of

four chapters. The first chapter covers the material related to power semi-

conductor devices. It starts with a brief review of the scope and nature
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of power electronics and then provides the summary of basic facts of semi-

conductor physics. This is followed by the discussion of p-n junctions and

diodes, where all the basic relations are derived and characteristic features

of power diodes are outlined. Then, the principles of operation and designs

of bipolar junction transistors (BJTs) and thyristors (SCRs) are presented

and the special emphasis is placed on the understanding of operation of

these devices as switches. Next, such devices as the MOSFET, power

MOSFET and IGBT are discussed and their main advantages as power

electronics switches are articulated. The chapter is concluded with brief

descriptions of snubber circuits and resonant switches. The principles of

zero-current switching (ZCS) and zero-voltage switching (ZVS) are outlined

and it is stressed that the design of resonant (quasi-resonant) power convert-

ers is a very active and promising area of research. The next chapter deals

with rectifiers. Here, single-phase bridge rectifiers with RL, RC and RLC

loads are first discussed along with center-tapped transformer rectifiers.

The time-domain technique is extensively used to derive analytical expres-

sions for currents and voltages in such rectifiers. Then, three-phase diode

rectifiers are studied and various circuit topologies of these rectifiers are

presented along with derivation of analytical expressions for voltages and

currents. The chapter is concluded with the discussion of phase-controlled

rectifiers, and single-phase as well as three-phase versions of such rectifiers

are studied in detail. The following chapter deals with inverters. It starts

with the discussion of single-phase bridge inverters, and the design of bidi-

rectional (bilateral) switches needed for the operation of the inverters is

motivated and described. This is followed by the detailed study of pulse-

width modulation (PWM) and analytical expressions for spectra of PWM

voltages are derived. The chapter is concluded with the discussion of three-

phase inverters. The design of ac-to-ac converters by cascading three-phase

rectifiers with three-phase inverters is then briefly outlined along with their

applications in ac motor drives. The last chapter of the third part of the

book deals with dc-to-dc converters (choppers). Here, the buck converter,

boost converter and buck-boost converter are first covered, and continuous

and discontinuous modes of their operation are studied in detail. The chap-

ter is concluded with the discussion of “flyback” and “forward” (indirect)

converters, and physical aspects of their operation are carefully described

along with all pertinent analytical formulas.

Each part of the book is supplemented by a list of problems of varying

difficulty. Many of these problems are pointed questions related to the

theoretical aspects discussed in the text. It is hoped that this may motivate



September 19, 2014 16:35 World Scientific Book - 9in x 6in modified˙ws-book9x6 page xi

Preface xi

readers to go through the appropriate parts of the text again and again,

which may eventually result in the better comprehension of the material.

We have made an effort to produce a relatively short book that cov-

ers the fundamentals of the very broad area of electric power engineering.

Naturally, this can only be achieved by omitting some topics. We have

omitted the discussion of transmission lines because this subject is usually

covered in courses on electromagnetics. We have also omitted the discus-

sion of power system protection and economic operation (optimal dispatch)

of generating resources. In our view, these topics are more suited for more

advanced courses. In the power electronics portion of the book, we have

limited our discussion to the most basic facts related to the circuit topol-

ogy and principles of operation of power converters. This book has a strong

theoretical flavor with emphasis on physical and mathematical aspects of

electric power engineering fundamentals. It clearly reveals the multidis-

ciplinary nature of power engineering and it stresses its connections with

other areas of electrical engineering. It is believed that this approach can

be educationally beneficial.

In undertaking this project, we wanted to produce a student-friendly

textbook. We have come to the conclusion that students’ interests are best

served when the discussion of complicated concepts is not avoided. We have

tried to introduce these concepts in a straightforward way and strived to

achieve clarity and precision in exposition. We believe that material which

is carefully and rigorously presented is better absorbed. It is for students

to judge to what extent we have succeeded.
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Review of Electric and Magnetic
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Chapter 1

Basic Electric Circuit Theory

1.1 Review of Basic Equations of Electric Circuit Theory

In circuit theory, there are two distinct types of basic mathematical rela-

tions. In the first type, these relations depend on the physical nature of

circuit elements and they are called terminal relations. The second type

of relations reflects the connectivity of the electric circuit, namely, how the

circuit elements are interconnected. For this reason, they are sometimes

called topological relations. These relations are based on the Kirchhoff

Current Law (KCL) and Kirchhoff Voltage Law (KVL).

We start with terminal relations and consider five basic two-terminal

elements: resistor, inductor, capacitor and ideal (independent) voltage and

current sources. These circuit elements are ubiquitous in power engineering

applications. However, in power electronics, multi-terminal circuit elements

are used as well. These multi-terminal circuit elements are models of power

semiconductor devices and they will be discussed in Chapter 1 of Part III.

A two-terminal element is schematically represented in Figure 1.1. Each

two-terminal element is characterized by the voltage v(t) across the termi-

nals and by the current i(t) through the element. In order to write the

meaningful equations relating the voltages and currents in electric circuits,

it is necessary to assign a polarity to the voltage and a direction to the

current. These assigned (not actual) directions and polarities are called

reference directions and reference polarities. These reference directions and

polarities are assigned arbitrarily. The actual current directions and volt-

age polarities are not known beforehand and they may change with time.

The reference direction for a current is indicated by an arrow, while the

reference polarity is specified by placing plus and minus signs next to ele-

ment terminals (see Figure 1.1). The reference directions and polarities are

3
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Fig. 1.1

usually coordinated by choosing the reference direction of the current from

the positive reference terminal to the negative reference terminal.

As discussed below, the reference directions and polarities are used in

writing KCL and KVL equations. These equations are then solved and the

signs of currents and voltages are found at any instant of time. If at time

t a current is positive,

i(t) > 0, (1.1)

then the actual direction of this current coincides with its reference direc-

tion. If, on the other hand, the found current is negative at time t,

i(t) < 0, (1.2)

then the actual direction of this current at time t is opposite to its reference

direction.

Similarly, if a voltage is found to be positive,

v(t) > 0, (1.3)

then the actual polarity coincides with its reference polarity. On the other

hand, if the voltage is found to be negative,

v(t) < 0, (1.4)

then the actual voltage polarity is opposite to its reference polarity. It is

clear from the above discussion that the reference directions and polarities

allow one to write KCL and KVL equations, then solve them and eventually

find actual directions and polarities of circuit variables.

Now, we consider a resistor. Its circuit notation is shown in Figure 1.2.

The terminal relation for the resistor is given by Ohm’s law,

v(t) = Ri(t), (1.5)

where R is the resistance of the resistor. By using the terminal relation

(1.5), we find the expression for instantaneous power p(t) for the resistor,

p(t) = v(t)i(t) = Ri2(t), (1.6)
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Fig. 1.2

Fig. 1.3

or

p(t) =
v2(t)

R
. (1.7)

It is clear from the last two equations that in the case of the resistor the in-

stantaneous power is always positive, which means that the resistor always

consumes electric power. This is the reason why resistors are often used in

electric power engineering to model irreversible losses of electric energy or

its conversion into other forms of energy.

Next, we discuss an inductor. Its circuit notation is shown in Figure 1.3.

The inductor is characterized by inductance L and its terminal relation is

given by the formula

v(t) = L
di(t)

dt
. (1.8)

The last equation implies that the current through an inductor is differen-

tiable and, consequently, a continuous function of time. The latter means

that for any instant of time t0 the value of the current i(t0−) immediately

before t0 is equal to the value of the current i(t0+) immediately after t0:

i(t0−) = i(t0+). (1.9)

It is clear from equation (1.8) that in the case of dc currents (i(t) = const)

the voltage across the inductor is equal to zero and the inductor can be

replaced by a “short-circuit” branch. On the other hand, if the inductor

(as a part of a circuit) is connected by some switch to a source and the initial

current through the inductor before switching is zero, then according to the
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continuity condition (1.9) the current through the inductor will remain zero

immediately after switching. This means that immediately after switching

the inductor is an “open-circuit” branch.

It is apparent from equation (1.8) that the instantaneous power p(t) for

the inductor is given by the formula

p(t) = v(t)i(t) = Li(t)
di(t)

dt
=
L

2

d
(
i2(t)

)
dt

. (1.10)

It follows from the last equation that power is positive if the absolute value

of inductor current increases with time and it is negative if the absolute

value of the current decreases with time. This implies that when the abso-

lute value of the inductor current is increasing with time, the electric power

is being consumed and stored in the inductor’s magnetic field. On the other

hand, when the absolute value of the inductor current is decreasing with

time, then the electric power is “given back” at the expense of the energy

previously stored in the magnetic field. This clearly suggests that the in-

ductor is an energy storage element and it finds many applications as such

in electric power engineering.

Another important application of the inductor is for “ripple suppres-

sion” in power electronics. Power electronics converters are switching-mode

converters in which semiconductor devices are used as switches that are

repeatedly (periodically) switched “on” and “off” to achieve the desired

performance of the converters. This periodic switching results in periodic

components of electric currents which manifest themselves as ripple in out-

put converter voltages. These ripples can be suppressed by using inductors.

Indeed, from equation (1.8) we find

i(t) = i(0) +
1

L

∫ t

0

v(τ)dτ. (1.11)

If the current is a periodic function of time with period T , then

i(0) = i(T ) (1.12)

and ∫ T

0

v(τ)dτ = 0. (1.13)

It is apparent that the second term in the right-hand side of equation (1.11)

can be construed as a ripple in electric current. It is clear from formula

(1.11) that this ripple can be suppressed by increasing the value of in-

ductance L. It is also clear from formulas (1.11) and (1.13) that the same
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Fig. 1.4

ripple can be suppressed by decreasing T , i.e., by increasing the frequency of

switching. This leads to the “trade-off” that is practiced in power electron-

ics: the higher the frequency of switching of power semiconductor devices,

the smaller the value of inductance that is needed for the ripple suppression.

Now, we proceed to the discussion of a capacitor. Its circuit notation is

shown in Figure 1.4. The capacitor is characterized by capacitance C and

its terminal relation is given by the formula

i(t) = C
dv(t)

dt
. (1.14)

The last equation implies that the voltage across a capacitor is differentiable

and, consequently, a continuous function of time. The latter means that for

any instant of time t0 the value of the voltage v(t0−) immediately before t0
is equal to the value of the voltage v(t0+) immediately after t0:

v(t0−) = v(t0+). (1.15)

It is apparent from equation (1.14) that in the case of dc voltages (v(t) =

const) the current through the capacitor is equal to zero and the capacitor

is an “open-circuit” branch. This is consistent with the fact that the current

through the capacitor is a displacement current, which exists only when the

electric field in the capacitor varies with time.

In the case when an uncharged capacitor with zero voltage is connected

through some switch to a source, then according to the continuity condition

(1.15) the voltage across the capacitor will remain zero immediately after

switching. This means that immediately after switching the capacitor is

a “short-circuit” branch. This implies that capacitors connected in par-

allel with power equipment may protect this equipment from large initial

transient currents, which mostly flow through these capacitors.

It is apparent from equation (1.14) that the instantaneous power p(t)

for the capacitor is given by the formula

p(t) = v(t)i(t) = Cv(t)
dv(t)

dt
=

C

2

d
(
v2(t)

)
dt

. (1.16)
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Fig. 1.5

It follows from the last equation that power is positive if the absolute value

of capacitor voltage increases with time and it is negative if the absolute

value of capacitor voltage decreases with time. This implies that, when

the absolute value of the capacitor voltage is increasing with time, the

electric power is being consumed and stored in the electric field within the

capacitor. On the other hand, when the absolute value of the capacitor

voltage is decreasing with time, then the electric power is “given back” at

the expense of energy stored in the electric field. This clearly reveals that

the capacitor is an energy storage element and it is used as such in many

power-related applications.

Another important application of the capacitor is for “ripple suppres-

sion” in power electronics. Indeed, from equation (1.14) we derive

v(t) = v(0) +
1

C

∫ t

0

i(τ)dτ. (1.17)

If the capacitor voltage is a periodic function of time with period T , then

v(0) = v(T ) (1.18)

and
∫ T

0

i(τ)dτ = 0. (1.19)

It is clear that the second term in the right-hand side of formula (1.17)

can be construed as a ripple in capacitor voltage. It is apparent from

formula (1.17) that this ripple can be suppressed by increasing the value

of capacitance C. It is also apparent from formulas (1.17) and (1.19) that

the same ripple can be suppressed by decreasing T , i.e., by increasing the

frequency of switching. Hence, the trade-off: the higher the frequency of

switching of semiconductor devices in power converters, the smaller the

value of the capacitance that is needed for ripple suppression.

Finally, we shall discuss ideal (independent) voltage and current sources,

whose circuit notations are shown in Figures 1.5 and 1.6, respectively. An
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Fig. 1.6

ideal voltage source is a two-terminal element with the property that the

voltage across its terminals is specified at every instant of time,

v(t) = vs(t), (1.20)

where vs(t) is a given (known) function of time. It is apparent from the

given definition that the terminal voltage does not depend on the current

through the voltage source, which is reflected in the terminology indepen-

dent voltage source.

An ideal current source is by definition a two-terminal element with the

property that the current through this element is specified at every instant

of time,

i(t) = is(t), (1.21)

where is(t) is a given (known) function of time. It is clear from the given

definition that the terminal current does not depend on the voltage across

the current source; in this sense, this is an ideal (or independent) current

source.

Previously we discussed the terminal relations, which are determined by

the physical nature of the circuit elements. Now, we proceed to the brief

discussion of the relations which are due to the connectivity of elements in

an electric circuit. There are two types of such relations. We begin with

the Kirchhoff Current Law (KCL). KCL equations are written for nodes

of electric circuits. A node of an electric circuit is a “point” where three

or more elements are connected together. KCL states that the algebraic

sum of electric currents at any node of an electric circuit is equal to zero

at every instant of time. This is mathematically expressed as follows:
∑
k

ik(t) = 0. (1.22)

The term “algebraic sum” implies that some currents are taken with posi-

tive signs while others are taken with negative signs. Two equivalent rules
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can be used for sign assignments. One rule is that positive signs are as-

signed to currents with reference directions toward the node, while negative

signs are assigned to currents with reference directions from the node. KCL

equations can be written for any node. However, only (n − 1) equations

will be linearly independent, where n is the number of nodes in a given cir-

cuit. The (n−1) nodes for which KCL equations are written can be chosen

arbitrarily. The KCL equation for the last (n-th) node can be obtained

by summing up the previously written KCL equations. This clearly sug-

gests that the equation for the last (n-th) node is not linearly independent.

A “point” in an electric circuit where only two elements are connected is

not qualified as a node because of the triviality of the KCL equation in

this case, which simply suggests that the same current flows through both

circuit elements, i.e., these two circuit elements are connected in series.

Next, we discuss equations written by using the Kirchhoff Voltage Law

(KVL). These equations are written for loops. A loop is defined as a set

of branches that form a closed path with the property that each node is

encountered only once as the loop is traced. A branch is defined as a

single two-terminal element or several two-terminal elements connected in

series. KVL states that the algebraic sum of branch voltages around any

loop of an electric circuit is equal to zero at every instant of time. This is

mathematically expressed as follows:∑
k

vk(t) = 0. (1.23)

The term “algebraic sum” implies that some branch voltages are taken with

positive signs while others are taken with negative signs. The following

rule can be used for sign assignment. If the tracing direction of the branch

coincides with the reference direction of the branch current then the positive

sign is assigned to the branch voltage, otherwise the negative sign is assigned

to the branch voltage.

Since there may be many possible loops for any given circuit, determin-

ing which loops must be traced in order to write linearly independent KVL

equations is not entirely obvious. One method which will always produce

the correct number of linearly independent KVL equations is based on the

use of a graph tree. By definition, a graph tree of an electric circuit is a

subset of branches with the property that all nodes of the circuit are con-

nected together, but there are no closed loops formed by these branches.

It is clear that any graph tree of an electric circuit with n nodes contains

n− 1 branches. By adding a new branch to the graph tree we create a new
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loop and a new KVL equation can be written for the created loop. This

KVL equation will contain a new variable – branch voltage for the added

branch. KVL equations written in this way will be linearly independent

because each new equation contains a new variable. It is easy to see that

the total number of linearly independent KVL equations written in the de-

scribed way is equal to b− (n− 1), where b is the total number of branches

in the circuit. This is so because b − (n − 1) branches should be removed

to form a graph tree and, consequently, b− (n− 1) loops will be formed by

adding one by one the removed branches.

It is clear that the total number of linearly independent equations writ-

ten by using KCL and KVL (i.e., the total number of equations (1.22)

and (1.23)) is equal to the number b of branches. An additional b equa-

tions are obtained by using terminal relations (1.5), (1.8), (1.14), (1.20)

and (1.21). Thus, the total number of equations is 2b, which is the total

number of circuit variables, i.e., the total number of branch currents and

branch voltages. These are ordinary differential equations for which the

initial conditions can be found by using the continuity conditions (1.9) and

(1.15). Thus, the framed equations (1.5), (1.8), (1.9), (1.14), (1.15), (1.20),

(1.21), (1.22) and (1.23) form the foundation of electric circuit theory. In

this theory, various analysis techniques have been developed which exploit

the connectivity of electric circuits as well as the particular nature of exci-

tation of these circuits. Some of these techniques will be discussed in this

first part of the book due to their wide use in electric power engineering.

It is worthwhile to note that in electric circuit theory the basic (framed)

relations (1.5), (1.8), (1.9), (1.14), (1.15), (1.20), (1.21), (1.22) and (1.23)

are treated as axioms (postulates) which are fully consistent with experi-

mental facts. However, within the framework of electromagnetic field the-

ory, all these fundamental circuit relations can be derived by using approx-

imations relevant to the notion of electric circuits with lumped parameters.

It is worthwhile to stress in the conclusion of this section that electric

circuits are models for actual devices – models which are based on some

simplifications and approximations. This may lead in some cases to in-

trinsic (logical) contradictions between the basic circuit relations. We shall

illustrate such possible contradictions for two cases of very simple electric

circuits shown in Figures 1.7 and 1.8. In Figure 1.7, at time t0 = 0 a

dc current source is connected by switch (SW ) to an inductor and a resis-

tor connected in series. It is clear that prior to the switching the current
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Fig. 1.7

Fig. 1.8

through the inductor is equal to zero,

i(0−) = 0. (1.24)

According to the continuity condition (1.9), the current i(0+) immediately

after switching must be equal to zero,

i(0+) = 0. (1.25)

However, according to KCL the same current must be equal to the current

I0 of the current source,

i(0+) = I0 �= 0, (1.26)

which is a contradiction.

Similarly, for the circuit shown in Figure 1.8, according to the continuity

condition (1.15) the voltage v(0+) across the capacitor is equal to zero,

v(0+) = 0, (1.27)

if the capacitor was not charged before switching. However, according to

KVL the same voltage must be equal to the voltage V0 of the dc voltage

source,

v(0+) = V0 �= 0, (1.28)

which is a contradiction.
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The above contradictions appear because in the circuits shown in Fig-

ures 1.7 and 1.8 some small parameters have been neglected. For instance,

for an actual (real) inductor there is always small parallel to L capacitance

between the turns of the inductor. The presence of this capacitance will

remove the contradiction between equations (1.25) and (1.26) because im-

mediately after switching the current I0 will flow through this capacitance.

Similarly, the presence of a small resistance of connecting wires in the circuit

shown in Fig. 1.8 will remove the contradiction between equations (1.27)

and (1.28), because immediately after switching the voltage V0 will be ap-

plied across such resistance. The presented discussion suggests that in the

actual devices represented by the circuits shown in Figures 1.7 and 1.8 the

initial stages of transients will be controlled by neglected small parameters.

This implies that small parameters can be important for proper modeling

of the performance of actual devices. It is demonstrated later in this text

that the importance of small parameters is typical for such power devices

as transformers and induction machines as well as boost and buck-boost

choppers.

1.2 Phasor Analysis of AC Electric Circuits

In many electric power applications, electric circuits are excited by ac (si-

nusoidal) sources. Under steady-state conditions, all voltages and currents

in such circuits will be sinusoidal. A special and very useful circuit analysis

technique exists which exploits this fact. It is known as the phasor tech-

nique and it uses complex numbers to represent time-harmonic sinusoidal

quantities. The main advantage of the phasor technique is that it reduces

calculus operations on time-harmonic sinusoidal quantities to algebraic op-

erations on complex numbers (phasors). As a result, the basic differential

equations of electric circuits discussed in the previous section are reduced

to linear algebraic equations with respect to phasors. This significantly

simplifies the analysis of electric circuits under ac steady-state conditions.

The central idea of the phasor technique can be described as follows. Ev-

ery time-harmonic sinusoidal quantity is fully characterized by three num-

bers: its frequency, peak value and initial phase. In ac steady-state analy-

sis, the frequency of sinusoidal quantities is fixed and known. Consequently,

every time-harmonic quantity of known frequency is fully characterized by

two numbers: its peak value and initial phase. The same is true for com-

plex numbers. In the polar form, each complex number is characterized
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by its magnitude (absolute value) and polar angle. This suggests to repre-

sent any time-harmonic quantity by a phasor, which is a complex number

whose magnitude is equal to the peak value of the time-harmonic quantity

and whose polar angle is equal to the initial phase of this time-harmonic

quantity. This definition of the phasor is illustrated by the following two

formulas for time-harmonic (sinusoidal) voltage and current, respectively,

v(t) = Vm cos(ωt+ ϕV )↔ V̂ = Vme
jϕV , (1.29)

i(t) = Im cos(ωt+ ϕI)↔ Î = Ime
jϕI , (1.30)

where V̂ and Î are the phasors of voltage and current, respectively. It is

clear from the above formulas that if sinusoidal quantities are given then it

is easy to write their phasors. On the other hand, if the phasor is known

and represented in the polar form, then it is easy to write the corresponding

time-harmonic quantity.

Now, it is easy to see that in the case of ac steady state all terminal

relations can be represented in the phasor form. Consider first a resistor.

Then, by substituting sinusoidal voltage and current in formula (1.5), we

find

Vm cos(ωt+ ϕV ) = RIm cos(ωt+ ϕI). (1.31)

The last equality implies that

Vm = RIm, (1.32)

ϕV = ϕI . (1.33)

The last formula reveals that in the case of resistors, their time-harmonic

voltages and currents are in phase. From the last two formulas, we also

derive

V̂ = Vme
jϕV = RIme

jϕI = RÎ. (1.34)

Thus, it is established that the terminal relation for the resistor can be

written in the phasor form as follows:

V̂ = RÎ. (1.35)

Next, we consider an inductor. Then, by substituting sinusoidal voltage

and current in formula (1.8), we find

Vm cos(ωt+ ϕV ) = −ωLIm sin(ωt+ ϕI), (1.36)
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or

Vm cos(ωt+ ϕV ) = ωLIm cos
(
ωt+ ϕI +

π

2

)
. (1.37)

The last equality implies that

Vm = ωLIm, (1.38)

ϕV = ϕI +
π

2
. (1.39)

The last formula reveals that in the case of the inductor, its time-harmonic

voltage leads its time-harmonic current by π
2 . Equivalently, the current lags

behind the voltage by π
2 . From the last two formulas we also derive

V̂ = Vme
jϕV = ωLIme

j(ϕI+π/2) = jωLIme
jϕI = jωLÎ. (1.40)

Thus, it is established that the terminal relation for the inductor can be

written in the phasor form as follows:

V̂ = jωLÎ. (1.41)

Finally, we consider a capacitor. By substituting sinusoidal voltage and

current in formula (1.14), we find

Im cos(ωt+ ϕI) = −ωCVm sin(ωt+ ϕV ), (1.42)

or

Im cos(ωt+ ϕI) = ωCVm cos
(
ωt+ ϕV +

π

2

)
. (1.43)

The last equality implies that

Im = ωCVm, (1.44)

ϕI = ϕV +
π

2
. (1.45)

The last formula reveals that in the case of the capacitor, its time-harmonic

current leads its time-harmonic voltage by π
2 . Equivalently, the voltage lags

behind the current by π
2 . From the last two formulas we also derive

Î = Ime
jϕI = ωCVme

j(ϕV +π/2) = jωCVme
jϕV = jωCV̂ . (1.46)

Thus, it is established that the terminal relation for the capacitor can be

written in the phasor form as follows:

V̂ = − j

ωC
Î. (1.47)
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It is also clear that given sinusoidal voltage and current sources, they can

be written in phasor forms:

vs(t) = Vms cos(ωt+ ϕVs)↔ V̂s = Vmse
jϕVs , (1.48)

is(t) = Ims cos(ωt+ ϕIs)↔ Îs = Imse
jϕIs . (1.49)

It can be concluded that in the case of ac steady state all terminal relations

can be written in the algebraic phasor form.

Now, we turn to KCL and KVL equations and write them in the pha-

sor form. To do this we shall use the fact that the phasor of the sum

of sinusoidal quantities is equal to the sum of the phasors of sinusoidal

quantities being summed. The proof of this fact is based on the following

mathematical relation between sinusoidal quantities and phasors:

v(t) = Vm cos(ωt+ ϕV ) = Re
[
Vme

j(ωt+ϕV )
]

= Re
[
V̂ ejωt

]
. (1.50)

Indeed, consider a sum of sinusoidal quantities of arbitrary physical nature

g(t) =
∑
k

Gmk cos(ωt+ ϕk) (1.51)

and we want to prove that

Ĝ =
∑
k

Ĝk. (1.52)

By using the Euler formula and formula (1.50), we find

g(t) =
∑
k

GmkRe
[
ej(ωt+ϕk)

]
=
∑
k

Re
[
Gmke

jϕkejωt
]

=
∑
k

Re
[
Ĝke

jωt
]

= Re

[(∑
k

Ĝk

)
ejωt

]
= Re

[
Ĝejωt

]
, (1.53)

which proves the equality (1.52).

Having established the last fact, we can write KCL equations (1.22) and

KVL equations (1.23) in the phasor form as follows:∑
k

Îk = 0, [(n− 1) lin. ind. eqs.], (1.54)

∑
k

V̂k = 0, [b− (n− 1) lin. ind. eqs.]. (1.55)

Next, we shall discuss the very important concept of impedance. To this

end, consider a branch where a resistor, an inductor and a capacitor are

connected in series (see Figure 1.9). According to KVL, we have
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Fig. 1.9

V̂ = V̂R + V̂L + V̂C . (1.56)

By using phasor relations (1.35), (1.41) and (1.47), we transform the last

equation as follows:

V̂ = RÎ + jωLÎ − j

ωC
Î = Î

[
R+ j

(
ωL− 1

ωC

)]
. (1.57)

Now, the impedance Z of the RLC branch can be naturally introduced by

the formula

Z = R+ j

(
ωL− 1

ωC

)
= R+ jX, (1.58)

where

X = ωL− 1

ωC
(1.59)

is called the reactance of the branch and it is determined by the energy

storage elements in the branch.

By using the definition (1.58) of impedance, we shall write the terminal

relation for the RLC branch in the form

V̂ = ÎZ. (1.60)

In the polar form, the impedance can be written as

Z = |Z|ejϕ. (1.61)

By substituting the last formula into equation (1.60), we find

VmejϕV = Im|Z|ej(ϕI+ϕ), (1.62)

which implies that

Vm = Im|Z|, (1.63)

ϕV − ϕI = ϕ. (1.64)
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Thus, the magnitude of branch impedance relates peak values of branch

voltage and current, while the polar angle of the impedance is equal to the

phase shift in time between branch voltage and current.

From equations (1.58) and (1.61) the following useful expressions for |Z|
and ϕ can be obtained:

|Z| =
√
R2 +X2 =

√
R2 +

(
ωL− 1

ωC

)2

, (1.65)

tanϕ =
X

R
=
ωL− 1

ωC

R
. (1.66)

The branch shown in Figure 1.9 has the most general composition when

three physically distinct two-terminal elements are connected in series. The

expression (1.58) for the impedance of such a branch is naturally simplified

when only one or two distinct two-terminal elements are present in the

branch. These simplifications are given by the following formulas:

Z = R, (1.67)

if a branch contains only a resistor;

Z = jωL, (1.68)

if a branch contains only an inductor;

Z = − j

ωC
, (1.69)

if a branch contains only a capacitor;

Z = R+ jωL (1.70)

for an RL branch;

Z = R− j

ωC
(1.71)

for an RC branch and

Z = j

(
ωL− 1

ωC

)
(1.72)

for an LC branch.

The last formula suggests that the impedance is equal to zero if

ω =
1√
LC

. (1.73)
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It is also clear that under the condition (1.73), the impedance of the RLC

branch is given by the formula

Z = R. (1.74)

In other words, under the condition (1.73) an RLC branch acts as a pure

resistor and branch voltage and current are in phase. This phenomenon is

called resonance and may have important implications.

The presented discussion can be summarized as follows. At ac steady

state, each branch can be characterized by impedance and the expression

for the branch impedance is determined by the composition of the branch.

Let us consider a branch number k and let Zk be its impedance. Then, the

phasor branch voltage V̂k and the phasor branch current Îk are related by

the formula (see (1.60))

V̂k = ÎkZk. (1.75)

Formula (1.75) can be used in the phasor form of KVL equations (1.55). In

these equations (as well as in equations (1.54)) we can also identify known

phasors of voltage and current sources and move them with appropriate

signs to the right-hand sides. The described transformations eventually

result in the following ac steady-state equations for the phasors of branch

currents: ∑
k

Îk = −
∑
k

Îsk,∑
k

ÎkZk = −
∑
k

V̂sk.

(1.76)

(1.77)

These are simultaneous linear algebraic equations and it is apparent that

the total number of these equations is equal to the total number of passive

(i.e., without sources) branches. By solving these equations, Îk can be found

and then by using formula (1.75) the phasors of branch voltages V̂k can be

determined. As soon as this is done, instantaneous voltages and branch

currents can be computed by using formulas similar to (1.50). In the circuit

theory, various techniques have been developed which exploit connectivity

of electric circuits. One example of such a technique is the method of

equivalent transformations which exploits series and parallel connections of

various branches to achieve the overall simplification of electric circuits.

It is interesting to mention that from the mathematical point of view

the phasor technique allows to find particular periodic solutions of ordinary

differential equations (ODEs) which describe the performance of electric



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 20

20 Fundamentals of Electric Power Engineering

circuits in the case of their time-harmonic excitation. This phasor technique

is more efficient and more powerful than the technique of undetermined

coefficients used in courses on ordinary differential equations. In this text,

the phasor technique will be frequently used to derive simple expressions

for particular periodic solutions of ODEs in cases when actual regimes are

not ac steady states.

As has been emphasized in our discussion, the main idea of the phasor

technique is to reduce the operations of calculus on sinusoidal quantities to

algebraic operations on their phasors. It turns out that this idea can be

extended to a broader class of voltages and currents.

Consider the following voltage:

v(t) = Vme
σt cos(ωt+ ϕV ). (1.78)

By using the Euler formula, the last formula can be transformed as follows:

v(t) = Vme
σtRe

[
ej(ωt+ϕV )

]
= Re

[
Vme

jϕV e(σ+jω)t
]
. (1.79)

Now, we introduce the voltage phasor V̂ ,

V̂ = Vme
jϕV , (1.80)

as well as the complex frequency

s = σ + jω. (1.81)

By using the last two formulas in equation (1.79), we find

v(t) = Re
[
V̂ est

]
. (1.82)

The last formula extends the notion of phasors to voltages (1.78) which are

characterized by complex frequency s. Similarly, for a current of complex

frequency s we have

i(t) = Ime
σt cos(ωt+ ϕI) = Re

[
Îest

]
, (1.83)

where as before Î = Ime
jϕI . Now, it can be shown that the phasor terminal

relations for resistors, inductors and capacitors in the case of voltages and

currents of the same complex frequency s are similar to formulas (1.35),

(1.41) and (1.47). Indeed, in the case of a resistor we have

Vme
σt cos(ωt+ ϕV ) = RIme

σt cos(ωt+ ϕI). (1.84)

By using formulas (1.79)-(1.83), we derive

Re
[
V̂ est

]
= Re

[
RÎest

]
, (1.85)
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which implies that

V̂ = RÎ. (1.86)

In the case of an inductor, we find

Vme
σt cos(ωt+ ϕV ) = σLIme

σt cos(ωt+ ϕI)

+ ωLIme
σt cos

(
ωt+ ϕI +

π

2

)
. (1.87)

The last equality can be transformed as follows:

Re
[
V̂ est

]
= Re

[
(σ + jω)LÎest

]
, (1.88)

or

Re
[
V̂ est

]
= Re

[
sLÎest

]
, (1.89)

which implies that

V̂ = sLÎ. (1.90)

By using the same line of reasoning, it can be shown that in the case of the

capacitor we have

V̂ =
1

sC
Î. (1.91)

By using this algebraization of terminal relations, it can be demonstrated

that in the case of an RLC branch subject to a voltage (1.78) of complex

frequency s we have the branch current of the same complex frequency and

their phasors are related by the impedance which is a function of the same

complex frequency. Namely,

V̂ = ÎZ(s), (1.92)

where

Z(s) = R+ sL+
1

sC
. (1.93)

In applications, it is quite rare that electric circuits are excited by sources

of complex frequency. However, voltages and currents of complex frequency

regularly appear in the case of transients in electric circuits. For this reason,

the notion of complex frequency as well as the notion of impedance Z(s) as

a function of complex frequency s can be useful in the analysis of transients

in electric circuits. Indeed, it can be shown that the complex frequencies of

transient response in RLC circuits are zeros of impedance Z(s) = 0. The

detailed discussion of this matter is beyond the scope of this section.
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Fig. 1.10

1.3 Phasor Diagrams

Phasor diagrams are ubiquitous in electric power engineering. They provide

geometric visualization for time phase shifts between different sinusoidal

quantities and for their peak values. The starting point in the discussion

of phasor diagrams is the representation of a sinusoidal quantity by a uni-

formly rotating vector. Consider a time-harmonic voltage

v(t) = Vm cos(ωt+ ϕV ). (1.94)

We can represent this voltage by a vector V̂ (called a phasor) whose length

is equal to the peak value Vm of v(t) and whose initial angle with the x-axis

of the Cartesian coordinate system is equal to the initial phase ϕV of v(t).

This angle is called “initial” because the vector V̂ is uniformly rotating in

the counterclockwise direction with constant angular velocity equal to the

angular frequency ω of v(t). Thus, at time t the angle ϕV (t) between the

vector V̂ and the x-axis (see Figure 1.10) is equal to

ϕV (t) = ωt+ ϕV , (1.95)

i.e., angle ϕV (t) is the sum of the initial angle ϕV and the angle ωt through

which the vector has rotated over the time t. If at any instant of time we

consider the projection of this vector onto the x-axis, it is clear that this

projection is equal to the instantaneous value of voltage v(t). In this sense,

v(t) is represented by the uniformly rotating vector V̂ . Now consider a

time-harmonic current of the same angular frequency ω,

i(t) = Im cos(ωt+ ϕI). (1.96)

It can also be represented by a uniformly rotating vector (phasor) Î whose

length is equal to the peak value Im of i(t) and whose initial angle with the

x-axis is equal to the initial phase ϕI of i(t). Since this vector is uniformly
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rotating in the counterclockwise direction with angular velocity ω, the angle

ϕI(t) between Î and the x-axis at time t (see Figure 1.10) is equal to

ϕI(t) = ωt+ ϕI . (1.97)

Again, it is apparent that at any instant of time t the projection of vector

Î onto the x-axis is equal to the instantaneous value of current i(t). Now,

the important fact emerges. If we consider the angle ϕ between the two

rotating vectors V̂ and Î, we find according to formulas (1.95) and (1.97)

that

ϕ = ϕV (t)− ϕI(t) = ϕV − ϕI = const. (1.98)

Thus, this angle ϕ does not change with time and it is equal to the phase

shift in time between sinusoidal voltage v(t) and sinusoidal current i(t). In

this sense, one may say that the rotation of the vectors does not matter

because it does not change the lengths of the vectors and the angle between

them. These lengths and the angle are the most important because they

represent the peak values of the sinusoidal quantities and their phase shift

in time. For this reason, the rotation of vectors (phasors) can be completely

ignored and we represent sinusoidal quantities by vectors (phasors) whose

lengths are equal to the peak values of the sinusoidal quantities and the

angles between the vectors are equal to the phase shifts in time between

the sinusoidal quantities. This is the central idea of the phasor diagrams,

i.e., to represent the phase shifts in time by geometric angles between the

vectors (phasors). This idea helps to visualize different relations between

sinusoidal quantities and to use geometry in calculations.

Phasor diagrams can be constructed for complicated electric circuits.

These constructions are based on generic phasor diagrams for the three ba-

sic two-terminal elements (resistor, inductor and capacitor). These generic

phasor diagrams are shown in Figure 1.11. Consider first the resistor. Ac-

cording to formula (1.33), time-harmonic voltage across the resistor and

time-harmonic current through the resistor are in phase, i.e., the phase

shift in time between the voltage and current is equal to zero. That is
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Fig. 1.12

why a generic phasor diagram for the resistor has the form shown in Figure

1.11a. This diagram is called generic because it reflects the main feature,

zero phase shift, while the lengths of phasors V̂R and ÎR may vary from

problem to problem. Now consider the inductor. According to formula

(1.39), time-harmonic voltage across the inductor leads the time-harmonic

current through the inductor by π
2
. For this reason, in the generic pha-

sor diagram the geometric angle between vectors V̂L and ÎL is equal to
π
2
(as shown in Figure 1.11b) and vector V̂L leads vector ÎL in the sense

of counterclockwise rotation. Finally, consider the capacitor. According

to formula (1.45), time-harmonic current through the capacitor leads the

time-harmonic voltage across the capacitor by π
2 . This means that in the

generic phasor diagram the geometric angle between vectors V̂C and ÎC is

equal to π
2 (as shown in Figure 1.11c) and vector ÎC leads vector V̂C in the

sense of counterclockwise rotation.

Now, through several examples we shall demonstrate how the phasor

diagrams can be constructed for actual circuits.

Example 1. Consider the RLC circuit shown in Figure 1.12 excited by

time-harmonic voltage. First, we shall write the KVL equation for this

circuit,

V̂ = V̂R + V̂L + V̂C . (1.99)

This equation implies that in the phasor diagram vector V̂ is the vectorial

sum of vectors V̂R, V̂L and V̂C . As a general rule, we start the construction

of the phasor diagram by identifying the quantity which is common to the

resistor, inductor and capacitor. This quantity is the current, so we shall

first draw vector Î. Then, according to the generic diagram 1.11a, the vector

V̂R has the same direction as vector Î (see Figure 1.13), while according to

the generic diagrams 1.11b and 1.11c vectors V̂L and V̂C are shifted from

vector Î by π
2 in counterclockwise and clockwise directions, respectively.

By performing the vector addition of the three vectors V̂R, V̂L and V̂C , we
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Fig. 1.14

arrive at the final form of the phasor diagram shown in Figure 1.13. In

this diagram, the geometric angle ϕ between vectors V̂ and Î represents

the phase shift in time between the input voltage and input current.

It is of interest to consider a particular form of this phasor diagram

corresponding to the case of resonance. The resonance occurs under the

condition specified by formula (1.73). At resonance, the input voltage and

current are in phase. This leads to the phasor diagram shown in Figure

1.14. It is apparent from this figure that the voltages across the inductor

and capacitor have the same peak values but opposite phases (i.e., shifted

in phase by π). For this reason, they compensate one another at any instant

of time. It is also apparent from Figure 1.14 that the peak values of voltages

across the inductor and capacitor may be much higher than the peak value

of the input voltage. This may never happen in dc circuits.
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Fig. 1.15

Fig. 1.16

Example 2. Consider the RL circuit shown in Figure 1.15. Suppose that

by using a voltmeter the peak values of the input voltage and the voltage

across the resistor have been measured and found to be 50 V and 30 V,

respectively. The question is what the peak value of the voltage across the

inductor and the phase shift in time between the input voltage and input

current are.

The visualization of the phasor diagram for the above circuit appreciably

facilitates and simplifies the solution of this problem. A well-versed person

will visualize this phasor diagram in mind (without actually drawing it) to

come up with the immediate answers that the peak value of the voltage

across the inductor is 40 V, while the phase shift in time between the input

voltage and input current is arctan 4/3. For pedagogical reasons, we draw

this phasor diagram shown in Figure 1.16, which is a particular case (V̂C =

0) of the phasor diagram shown in Figure 1.13. From the right triangle in

Figure 1.16, the above-stated solution of the problem becomes immediately

apparent.

Example 3. Consider a more complicated circuit shown in Figure 1.17.
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First, we shall write the relevant KCL and KVL equations:

Î = ÎC + ÎR, (1.100)

V̂ = V̂L + V̂12, (1.101)

where V̂12 is the phasor of the voltage across the nodes 1 and 2. These

equations imply that vectorial sums of ÎC with ÎR and V̂L with V̂12 will

result in Î and V̂ , respectively. Second, as a general rule, we start the

construction of the phasor diagram from the “end” of the circuit where a

resistor and a capacitor are connected in parallel and we identify the voltage

V̂12 as the common quantity for R and C. So, we start the construction of

the phasor diagram by drawing the vector V̂12. According to the generic

phasor diagrams shown in Figures 1.11a and 1.11c, vector ÎR has the same

direction as V̂12, while vector ÎC is perpendicular to V̂12 and “leads” it as

far as counterclockwise rotation is concerned. According to (1.100), the

vectorial sum of ÎR and ÎC results in Î as shown in Figure 1.18. According

to the generic diagram shown in Figure 1.11b, vector V̂L is perpendicular

to Î and leads it in the sense of counterclockwise rotation. According

to equation (1.101), the vectorial sum of V̂12 and V̂L results in V̂ . This

completes the construction of the phasor diagram and the geometric angle

ϕ is equal to the phase shift in time between the input voltage and input

current.

Example 4. Consider a circuit shown in Figure 1.19. First, we write

relevant KCL and KVL equations

V̂12 = V̂R + V̂L2
, (1.102)

Î = ÎR + ÎC , (1.103)

V̂ = V̂L1
+ V̂12, (1.104)

where, as before, V̂12 is the phasor of the voltage across the nodes 1 and 2.

Second, as a general rule, we start the construction of the phasor diagram
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Fig. 1.18

Fig. 1.19

from the “end” of the circuit, i.e., from the branch RL2 and we identify

the current ÎR as the quantity common to R and L2. So, we draw vec-

tor ÎR. According to the generic phasor diagrams shown in Figure 1.11a

and 1.11b, vector V̂R has the same direction as the vector ÎR, while vector

V̂L2
is perpendicular to the vector ÎR and its orientation reflects that the

voltage across the inductor leads the current by π
2 . According to equation

(1.102), the vectorial sum of V̂R and V̂L2 results in V̂12 (see Figure 1.20).

According to the generic diagram shown in Figure 1.11c, vector ÎC is per-
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pendicular to vector V̂12 and “leads” it in the sense of counterclockwise

rotation. The vectorial sum of ÎC and ÎR results according to equation

(1.103) in Î. Finally, according to the generic diagram shown in Figure

1.11b, vector V̂L1
is perpendicular to vector Î and “leads” it. According to

equation (1.104), the vectorial sum of V̂L1
and V̂12 results in V̂ , and this

completes the construction of the phasor diagram.

This concludes the discussion of the phasor diagrams, which will be

extensively used throughout this text.
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Chapter 2

Analysis of Electric Circuits with
Periodic Non-sinusoidal Sources

2.1 Fourier Series Analysis

In power electronics, analysis of steady-state performance of switching-

mode power converters is reduced to the analysis of electric circuits ex-

cited by time-periodic non-sinusoidal sources. There are two analytical

techniques that will be extensively used in this text for the analysis of such

circuits. The first one is the frequency-domain technique, which is based on

the Fourier series expansions of time-periodic functions (sources) and sub-

sequent use of the phasor technique. The second one is the time-domain

technique, which is based on the formulation of the steady-state circuit

analysis as a boundary value problem for ordinary differential equations

with periodic boundary conditions.

We begin with the frequency-domain technique and we first review in

this section the basic facts related to the Fourier series. These series are

used for periodic functions. Below, we consider periodic functions of time,

which is relevant to circuit analysis. However, the Fourier series are also

very instrumental in the design of windings of synchronous and induction

machines discussed in the second part of this book. In that case, Fourier

series are used for the expansion of periodic functions in space rather than

in time.

Function f(t) is said to be periodic with period T (see Figure 2.1) if

f(t+ T ) = f(t). (2.1)

It is apparent that a multiple of T by any natural number is a period of f(t)

as well. It will be assumed in the following that T is the smallest period of

f(t). The fundamental angular frequency

ω =
2π

T
(2.2)

31
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Fig. 2.1

will be associated with this period. It turns out that under some general

conditions periodic functions can be expanded into trigonometric Fourier

series

f(t) = c0 +
∞∑
n=1

[an cosnωt+ bn sinnωt] , (2.3)

where numbers c0, an and bn are called the Fourier expansion coefficients.

The next step is to find the expression for these expansion coefficients in

terms of function f(t). This can be accomplished by using the following

“orthogonality” relations for trigonometric functions:∫ T

0

cosnωtdt = 0, (2.4)

∫ T

0

sinnωtdt = 0, (2.5)

∫ T

0

cosnωt sinmωtdt = 0, (2.6)

∫ T

0

cosnωt cosmωtdt =
T

2
δnm, (2.7)

∫ T

0

sinnωt sinmωtdt =
T

2
δnm, (2.8)

where the symbol δnm is the so-called Kronecker delta defined as follows:

δnm =

{
1, if n = m,

0, if n 6= m.
(2.9)
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These orthogonality conditions are easy to prove. Formulas (2.4) and (2.5)

are immediately obvious because functions cosnωt and sinnωt are periodic

with period T
n , and the integrals of sine and cosine functions over any

number of periods are equal to zero. The proof of formulas (2.6), (2.7) and

(2.8) is only slightly more complicated. This proof is based on the well-

known trigonometric identities which reduce products of sine and cosine

functions to sums of these functions with modified arguments, and then

formulas similar to (2.4) and (2.5) can be used. This line of reasoning

can be followed when n 6= m. In the case when n = m, the trigonometric

identities relating squares of cosine and sine functions to cosine functions of

double argument can be used to arrive at formulas (2.7) and (2.8). We omit

the details of the outlined derivations and encourage the reader to perform

these derivations, which will be beneficial for proper understanding of the

material.

In calling formulas (2.4)-(2.8) orthogonality conditions, we use geomet-

ric language which implies the analogy between formulas (2.4)-(2.8) and

orthogonality of vectors. In this sense, the functional set consisting of a con-

stant function and trigonometric functions is an orthogonal functional set,

and formulas (2.4) and (2.5) can be understood as orthogonality relations

between a constant function and cosine and sine functions. Orthogonal

vectors are linearly independent and may be used as bases for expansions

of an arbitrary vector. Similarly, the functional set consisting of a constant

function and cosine and sine functions can be used as the functional ba-

sis for the expansion of an arbitrary function f(t), and formula (2.3) can

be understood as such an expansion. The Fourier expansion coefficients

can be interpreted as “projections” of f(t) on the “axes” identified with

a constant function and cosine and sine functions. This interpretation is

consistent with the following formulas for the expansion coefficients:

c0 =
1

T

∫ T

0

f(t)dt,

an =
2

T

∫ T

0

f(t) cosnωtdt,

bn =
2

T

∫ T

0

f(t) sinnωtdt.

(2.10)

(2.11)

(2.12)

These formulas can be derived by using the orthogonality relations. Indeed,

by integrating both sides of formula (2.3) over T and by using formulas (2.4)

and (2.5) we arrive at equation (2.10). In geometric language, it can be said
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that c0 is the projection of f(t) on the constant (unity) function. Similarly,

by multiplying both sides of formula (2.3) by cosnωt, subsequently inte-

grating both sides over T and using the orthogonality relations (2.4), (2.6)

and (2.7), we arrive at the formula (2.11). In geometric language, it can

be said that an is the projection of f(t) on cosnωt. Finally, by multiplying

both sides of formula (2.3) by sinnωt, subsequently integrating both sides

over T and using orthogonality relations (2.5), (2.6) and (2.8), we arrive

at the formula (2.12). In geometric language, it can be said that bn is the

projection of f(t) on sinnωt.

Next, the following two remarks are in order.

Remark 1. Integrands in formulas (2.10), (2.11) and (2.12) are periodic

functions of period T . It is apparent from the geometric point of view that

integrals of such functions over period T do not depend on the location of

the time interval of integration. Consequently, the last three formulas can

also be written in the following form:

c0 =
1

T

∫ T
2

−T2
f(t)dt,

an =
2

T

∫ T
2

−T2
f(t) cosnωtdt,

bn =
2

T

∫ T
2

−T2
f(t) sinnωtdt.

(2.13)

(2.14)

(2.15)

Remark 2. Under some general conditions, expansion coefficients an and

bn tend to zero with the increase of n, i.e.,

lim
n→∞

an = 0, lim
n→∞

bn = 0. (2.16)

It is interesting to note that formulas (2.16) are valid despite the fact that

the integrands in formulas (2.11) and (2.12) do not tend to zero. This raises

the question of the generic intuitive explanation for the validity of relations

(2.16). The reason is that the functions cosnωt and sinnωt become very

fast oscillating as n is increased. In other words, the period T
n of these func-

tions becomes smaller and smaller. A sufficiently regular (normal) function

f(t) can be accurately approximated by a piecewise constant function with

constant values in each time interval of T
n -duration. According to (2.4)

and (2.5), for such piecewise constant functions, the integrals in (2.11) and

(2.12) are equal to zero. A simple and rigorous proof of the validity of rela-

tions (2.16) can be given by assuming that f(t) is differentiable and using
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integration by parts in formulas (2.11) and (2.12). The reader is encouraged

to carry out this proof.

A periodic function f(t) may have some symmetry properties. These

symmetry properties may result in substantial simplifications of Fourier

series (2.3). Below, we shall discuss three types of symmetries: even sym-

metry, odd symmetry and half-wave symmetry.

a) Even symmetry

A function f(t) is called even (or even symmetric) if for any t we have

f(t) = f(−t). (2.17)

An example of the graph of such function is shown in Figure 2.2, and

it is clear that this graph exhibits mirror symmetry with respect to the

vertical axis. It is apparent from formula (2.17) as well as from Figure

2.2 that for any even function we have∫ T
2

− T
2

f(t)dt = 2

∫ T
2

0

f(t)dt. (2.18)

b) Odd symmetry

A function f(t) is called odd (or odd symmetric) if for any t we have

f(t) = −f(−t). (2.19)

An example of the graph of such function is shown in Figure 2.3, and

it is clear that this graph exhibits rotational symmetry with respect to

the origin. It is apparent from formula (2.19) as well as from Figure 2.3

that for any odd function we have∫ T
2

−T
2

f(t)dt = 0. (2.20)
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Fig. 2.3

Fig. 2.4

Remark 3. It follows from the definitions (2.17) and (2.19) that the

product of two even or two odd functions is an even function, while the

product of an even function and an odd function is an odd function.

c) Half-wave symmetry

A periodic function f(t) is called a half-wave symmetric function if for

any t we have

f

(
t+

T

2

)
= −f(t), (2.21)

where T is the period of f(t).

An example of the graph of such function is shown in Figure 2.4. It

is apparent from the definition (2.21) and Figure 2.4 that a half-wave

symmetric function has two identical but of opposite sign half-cycles.
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For this reason, ∫ T

0

f(t)dt = 0. (2.22)

Remark 4. Half-wave symmetric functions are related to functions of

period T
2 . Indeed, it is easy to see that the product of two half-wave

symmetric functions is a function of period T
2 , while the product of a

half-wave symmetric function and a function of period T
2 is a half-wave

symmetric function.

Now, we demonstrate symmetry-related simplifications of Fourier series

(2.3). We start with the case when f(t) is an even function. We recall that

cosnωt are even functions, while sinnωt are odd functions. From the last

observation and Remark 3, we find that the integrands in formulas (2.13)

and (2.14) are even functions, while integrands in formula (2.15) are odd

functions. From these facts and formulas (2.18) and (2.20), we conclude

that

bn = 0, (2.23)

f(t) = c0 +
∞∑
n=1

an cosnωt,

c0 =
2

T

∫ T
2

0

f(t)dt,

an =
4

T

∫ T
2

0

f(t) cosnωtdt.

(2.24)

(2.25)

(2.26)

The achieved simplification is twofold. First, only a constant term and

cosine terms are present in the Fourier series expressions. Second, the

calculation of c0 and an requires the evaluation of integrals over T
2 rather

than over T .

Next, we consider the case when f(t) is an odd function. In this case,

according to Remark 3 the integrands in formulas (2.13) and (2.14) are odd

functions, while the integrands in formulas (2.15) are even functions. From

these facts and formulas (2.18) and (2.20), we conclude respectively

c0 = 0, (2.27)

an = 0, (2.28)
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f(t) =
∞∑
n=1

bn sinnωt,

bn =
4

T

∫ T
2

0

f(t) sinnωtdt.

(2.29)

(2.30)

Finally, we consider the case when f(t) is a half-wave symmetric func-

tion. According to formulas (2.22) and (2.10), we immediately find

c0 = 0. (2.31)

To achieve further simplification in Fourier series expansions, we observe

that for odd n functions cosnωt and sinnωt are half-wave symmetric func-

tions, while for even n functions cosnωt and sinnωt are periodic with period
T
2 . From the last observation and Remark 4, we find that the integrands

in formulas (2.11) and (2.12) are of half-wave symmetry for even n, while

these integrands are periodic functions of period T
2 for odd n. Thus, ac-

cording to (2.22) all even Fourier coefficients are equal to zero, while odd

Fourier coefficients are not equal to zero and integration over T can be

reduced to double the integration over T
2 . Thus, we arrive at the following

simplification of Fourier series:

f(t) =
∞∑
n=0

[a2n+1 cos(2n+ 1)ωt+ b2n+1 sin(2n+ 1)ωt] ,

a2n+1 =
4

T

∫ T
2

0

f(t) cos(2n+ 1)ωtdt,

b2n+1 =
4

T

∫ T
2

0

f(t) sin(2n+ 1)ωtdt.

(2.32)

(2.33)

(2.34)

It is worthwhile to mention that the case of half-wave symmetric functions

is encountered quite often in various electric power-related applications.

We conclude this section by the discussion of an alternative form of

Fourier series. This form is very convenient for the coupling of the Fourier

series expansion with the phasor technique. This coupling is the foundation

of the frequency-domain technique for the analysis of electric circuits with

periodic non-sinusoidal sources.

Consider one term of the infinite sum in Fourier series expansion (2.3)
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and perform the following transformations:

an cosnωt+ bn sinnωt =
√
a2
n + b2n

(
an√
a2
n + b2n

cosnωt

+
bn√
a2
n + b2n

sinnωt

)
. (2.35)

Next, we introduce ϕn by the formulas

cosϕn =
an√
a2
n + b2n

, (2.36)

sinϕn = − bn√
a2
n + b2n

, (2.37)

which means that

tanϕn = − bn
an
. (2.38)

It is easy to see that this introduction is consistent with trigonometric

identity

cos2 ϕn + sin2 ϕn = 1. (2.39)

We shall also introduce the notation

cn =
√
a2
n + b2n. (2.40)

By substituting formulas (2.36), (2.37) and (2.39) into equation (2.35), we

obtain

an cosnωt+ bn sinnωt = cn(cosϕn cosnωt− sinϕn sinnωt)

= cn cos(nωt+ ϕn). (2.41)

By using the last relation in formula (2.3), we arrive at the following alter-

native form of the Fourier series:

f(t) = c0 +
∞∑
n=1

cn cos(nωt+ ϕn), (2.42)

where c0, cn and ϕn can be computed by using the following formulas:

c0 =
1

T

∫ T

0

f(t)dt,

an =
2

T

∫ T

0

f(t) cosnωtdt,

bn =
2

T

∫ T

0

f(t) sinnωtdt,

cn =
√
a2
n + b2n,

tanϕn = − bn
an
.

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

This concludes the review of the Fourier series.
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Fig. 2.5

2.2 Frequency-Domain Technique

In this section, we consider the frequency-domain technique for the analysis

of steady-state regimes of electric circuits excited by periodic non-sinusoidal

sources. This technique is based on the combined usage of Fourier series

expansions and phasors. We first present the general description and jus-

tification of the frequency domain technique and then we illustrate this

technique by two examples.

Consider an electric circuit shown in Figure 2.5. Here, vs(t) is a given

periodic non-sinusoidal voltage source

vs(t+ T ) = vs(t), (2.48)

while LEC is the abbreviation for a generic linear electric circuit with given

lumped parameters. It is required to find the input electric current i(t) in

the steady-state regime, i.e.,

i(t+ T ) = i(t). (2.49)

The frequency-domain technique for the solution of the stated problem con-

sists of the following three steps.

Step 1. The given periodic function vs(t) is expanded into Fourier series

by using formulas (2.42)-(2.47). These formulas in the notation relevant to
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our problem can be written as follows:

vs(t) = Vs0 +
∞∑
n=1

Vsn cos(nωt+ ϕsn), (2.50)

Vs0 =
1

T

∫ T

0

vs(t)dt, (2.51)

an =
2

T

∫ T

0

vs(t) cosnωtdt, (2.52)

bn =
2

T

∫ T

0

vs(t) sinnωtdt, (2.53)

Vsn =
√
a2
n + b2n, (2.54)

tanϕsn = − bn
an
, (2.55)

where

ω =
2π

T
. (2.56)

Each term in the expansion (2.50) can be interpreted as a voltage source:

vsn(t) = Vsn cos(nωt+ ϕsn), (2.57)

vs(t) = Vs0 +
∞∑
n=1

vsn(t), (2.58)

and the given voltage source can be interpreted as the series connection of

these voltage sources (see Figure 2.6).

Step 2. Next, we shall use the superposition principle illustrated in Figure

2.7 and consider the current i(t) as the sum of currents I0 and in(t) excited

in LEC when only one of the voltage sources Vs0 or vsn(t), respectively, is

active:

i(t) = I0 +
∞∑
n=1

in(t). (2.59)

The calculation of I0 requires dc analysis of LEC subject to dc voltage Vs0.

In this analysis, inductors in LEC are replaced by short-circuit branches,

while capacitors are replaced by open-circuit branches. Thus, the deter-

mination of I0 is reduced to the dc analysis of the resistive electric circuit

corresponding to LEC (see Figure 2.8).
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Fig. 2.6

Fig. 2.7

Fig. 2.8
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Fig. 2.9

The calculation of in(t) can be carried out by using the phasor tech-

nique. Namely, the time-harmonic voltage source vsn(t) is represented by

the phasor

vsn(t) = Vsn cos(nωt+ ϕsn) → V̂sn = Vsne
jϕsn , (2.60)

each branch of LEC is represented by its impedance evaluated at the angular

frequency nω and the phasor analysis technique is used to find the phasor

În in the impedance version of LEC (see Figure 2.9). Having found the

phasor În = Imne
jϕIn , the current in(t) can be written as follows:

În = Imne
jϕIn → in(t) = Imn cos(nωt+ ϕIn). (2.61)

Step 3. By using formulas (2.59) and (2.61), the final expression for i(t)

can be represented in the form

i(t) = I0 +

∞∑
n=1

Imn cos(nωt+ ϕIn). (2.62)

We conclude the general description of the frequency-domain technique

with the following two remarks.

Remark 1. In many power electronics-related applications, the first term

in the right-hand side of formula (2.62) can be interpreted as the main

desired signal, while the infinite sum in (2.62) can be interpreted as unde-

sirable “ripple.” Thus, the frequency-domain technique leads to the clear

separation between the main desired component of the signal and its ripple.

Remark 2. In the presented general description of the frequency-domain

technique, the calculation of the input current i(t) was discussed. It is easy

to see that the same three steps can be applied to the calculation of any

branch current or any branch voltage of LEC.

Now, we shall illustrate the frequency-domain technique by two exam-

ples.
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Fig. 2.10

Fig. 2.11

Example 1. Consider the electric circuit shown in Figure 2.10, where the

voltage source vs(t) is a periodic sequence (train) of identical rectangular

pulses (see Figure 2.11). Thus, V0, T , t0, L and R are given, and it is

required to find i(t) and vR(t) in the steady-state regime, i.e.,

i(t+ T ) = i(t), vR(t+ T ) = vR(t). (2.63)

Step 1. We represent vs(t) as the following Fourier series:

vs(t) = Vs0 +

∞∑
n=1

Vsn cos(nωt+ ϕsn), (2.64)

where

ω =
2π

T
. (2.65)

To find Vs0, Vsn and ϕsn, we sequentially use the formulas (2.51)-(2.55).

Vs0 =
1

T

∫ T

0

vs(t)dt =
1

T

∫ t0

0

V0dt =
t0
T
V0. (2.66)

By introducing the notation D for so-called duty factor,

D =
t0
T
, (2.67)

we find

Vs0 = DV0. (2.68)
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Next,

an =
2

T

∫ T

0

vs(t) cosnωtdt =
2V0

T

∫ t0

0

cosnωtdt

=
2V0

T

(
1

nω
sinnωt

)∣∣∣∣t0
0

=
2V0

nωT
sinnωt0. (2.69)

Taking into account in the last formula the relation (2.65), we find

an =
V0

πn
sinnωt0. (2.70)

Similarly,

bn =
2

T

∫ T

0

vs(t) sinnωtdt =
2V0

T

∫ t0

0

sinnωtdt

=
2V0

T

(
− 1

nω
cosnωt

)∣∣∣∣t0
0

=
2V0

nωT
(1− cosnωt0). (2.71)

Invoking again the relation (2.65), the last formula can be written as follows:

bn =
V0

πn
(1− cosnωt0). (2.72)

Next,

Vsn =
√
a2
n + b2n =

V0

πn

√
sin2 nωt0 + (1− cosnωt0)2

=
V0

πn

√
2(1− cosnωt0) =

V0

πn

√
4 sin2 nωt0

2
, (2.73)

which implies that

Vsn =
2V0

πn

∣∣∣∣sin nωt02

∣∣∣∣ . (2.74)

Finally,

tanϕsn =
cosnωt0 − 1

sinnωt0
. (2.75)

Thus, the explicit analytical expressions are found for Vs0, Vsn and ϕsn.

This concludes this first step.

Step 2. First consider the dc analysis of the resistive version of the electric

circuit shown in Figure 2.10. This is illustrated by Figure 2.12. This

analysis is trivial and results in

I0 =
Vs0
R

=
DV0

R
, VR0 = DV0. (2.76)
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Fig. 2.12

Fig. 2.13

Second, consider the phasor analysis of ac steady state in the circuit shown

in Figure 2.13 at the frequency nω. Here, we find

V̂sn = Vsne
jϕsn , (2.77)

and Vsn and ϕsn are given by formulas (2.74) and (2.75). Furthermore,

În =
V̂sn

Zn
, (2.78)

where

Zn = R+ jnωL =
√
R2 + n2ω2L2ejϕn (2.79)

and

tanϕn =
nωL

R
. (2.80)

By substituting formulas (2.77) and (2.79) into equation (2.78), we end up

with

În =
Vsn√

R2 + n2ω2L2
ej(ϕsn−ϕn). (2.81)

From the last formula, we find

in(t) =
Vsn√

R2 + n2ω2L2
cos(nωt+ ϕsn − ϕn). (2.82)
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Step 3. The input current i(t) is the sum of currents I0 and in(t) for all

ac steady-state regimes:

i(t) = I0 +
∞∑
n=1

in(t), (2.83)

or

i(t) =
DV0

R
+

2V0

π

∞∑
n=1

∣∣sin nωt0
2

∣∣
n
√
R2 + n2ω2L2

cos(nωt+ ϕsn − ϕn), (2.84)

where we have used formula (2.74) for Vsn in the equation (2.82). By

multiplying the last formula by R we find the voltage across the resistor

vR(t) = DV0 +
2V0R

π

∞∑
n=1

∣∣sin nωt0
2

∣∣
n
√
R2 + n2ω2L2

cos(nωt+ ϕsn − ϕn). (2.85)

In some applications

ωL� R, (2.86)

and √
R2 + n2ω2L2 ≈ nωL. (2.87)

This leads to the following simplification of formula (2.85):

vR(t) ≈ DV0 +
2V0R

πωL

∞∑
n=1

∣∣sin nωt0
2

∣∣
n2

cos(nωt+ ϕsn − ϕn). (2.88)

It is clear that due to the inequality (2.86) the second term (the ripple)

in the right-hand side of formula (2.88) is small. It is also clear from the

last formula that the ripple suppression is controlled by the product ωL.

This implies the trade-off for ripple suppression between the value of L and

the frequency of switching used to produce the train of rectangular pulses

shown in Figure 2.11. We point out that this trade-off has already been

discussed in general terms in section 1 of Chapter 1.

Example 2. Consider the electric circuit shown in Figure 2.14, where

the voltage source vs(t) is a periodic function of time shown in Figure 2.11.

It is assumed that V0, T , t0, R, L and C are given, and it is required to

find voltage vR(t) across the resistor in the steady-state regime, i.e.,

vR(t+ T ) = vR(t). (2.89)
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Fig. 2.14

Step 1. As before, we represent vs(t) by the Fourier series

vs(t) = Vs0 +
∞∑

n=1

Vsn cos(nωt+ ϕsn), (2.90)

where ω = 2π
T and Vs0, Vsn and ϕsn can be computed by using formulas

(2.68), (2.74) and (2.75). In other words, the first step in this example is

identical to the first step in the first example, because the electric circuits

in these examples are excited by identical voltage sources.

Step 2. The dc analysis of the electric circuit shown in Figure 2.14 and

subject to dc voltage source Vs0 (instead of voltage source vs(t)) leads to

the circuit shown in Figure 2.12. The result of this analysis is obvious:

VR0 = Vs0 = DV0. (2.91)

Next, we consider the phasor analysis of ac steady state in the electric

circuit shown in Figure 2.15 at the frequency nω. Here, as before,

V̂sn = Vsne
jϕsn (2.92)

and Vsn and ϕsn are found in the first step (see formulas (2.74) and (2.75)).

It is apparent that the phasor În of the input current is equal to

În =
V̂sn

Zn
, (2.93)

where Zn is the input impedance of the electric circuit shown in Figure

2.15 at the frequency nω. It is clear that this input impedance is found as

follows:

Zn = jnωL+
− j

nωCR

− j
nωC +R

. (2.94)

By using simple algebraic transformations, we find

Zn = jnωL+
R

1 + jnωCR
=

R− n2ω2LCR+ jnωL

1 + jnωCR
. (2.95)



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 49

Analysis of Electric Circuits with Periodic Non-sinusoidal Sources 49

Fig. 2.15

By substituting the last formula into (2.93), we arrive at

În = V̂sn
1 + jnωCR

R− n2ω2LCR+ jnωL
. (2.96)

Now, by using the current divider rule, we obtain

ÎRn = În

−j
nωC

−j
nωC +R

= În
1

1 + jnωCR
. (2.97)

By substituting formula (2.96) into the last equation, we find

ÎRn =
V̂sn

R− n2ω2LCR+ jnωL
, (2.98)

which leads to

V̂Rn = V̂sn
R

R− n2ω2LCR+ jnωL
. (2.99)

By using formula (2.92) and simple transformations, the last equation can

be written as follows:

V̂Rn =
VsnR√

(n2ω2LCR−R)
2
+ n2ω2L2

ej(ϕsn−ϕn), (2.100)

where

tanϕn =
nωL

R− n2ω2LCR
. (2.101)

From formula (2.100) we obtain

vRn(t) =
VsnR√

(n2ω2LCR−R)
2
+ n2ω2L2

cos(nωt+ ϕsn − ϕn). (2.102)

Step 3. Now, by using the superposition principle, we arrive at

vR(t) = VR0 +
∞∑

n=1

vRn(t). (2.103)
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By using in the last equation formula (2.91) for VR0 and formula (2.102)

for vRn(t) as well as formula (2.74) for Vsn, we obtain the final expression

for vR(t):

vR(t) = DV0

+
2V0R

π

∞∑
n=1

∣∣sin nωt0
2

∣∣
n

√
(n2ω2LCR−R)

2
+ n2ω2L2

cos(nωt+ ϕsn − ϕn).

(2.104)

In certain applications, the second term in the right-hand side of the last

equation can be construed as a ripple. This ripple will be effectively sup-

pressed if the lumped parameters of the circuit shown in Figure 2.14 are

chosen in such a way that

ω2LC � 1 and ω2C2R2 � 1. (2.105)

The last inequalities imply, respectively, that

n2ω2LCR� R (2.106)

and

n4ω4L2C2R2 � n2ω2L2. (2.107)

Formulas (2.106) and (2.107) mean that√
(n2ω2LCR−R)

2
+ n2ω2L2 ≈ n2ω2LCR. (2.108)

This leads to the following simplification of equation (2.104):

vR(t) ≈ DV0 +
2V0

πω2LC

∞∑
n=1

∣∣sin nωt0
2

∣∣
n3

cos(nωt+ ϕsn − ϕn). (2.109)

Now, it is apparent that more efficient suppression of ripple can be achieved

in the circuit shown in Figure 2.14 in comparison with the circuit shown

in Figure 2.10. Indeed, each term in the infinite sum of formula (2.109)

decays as 1/n3 rather than 1/n2 as in formula (2.88). In addition, the

suppression of the ripple in formula (2.109) is controlled by the product

ω2LC rather than by the product ωL. This means that the increase in

switching frequency suppresses the ripple more efficiently in the circuit

shown in Figure 2.14 as compared with the circuit shown in Figure 2.10.

Finally, the dependence of ripple suppression on ω2LC reveals, as before,

the trade-off between the values of energy storage elements L and C and

the frequency of switching.



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 51

Analysis of Electric Circuits with Periodic Non-sinusoidal Sources 51

Fig. 2.16

Fig. 2.17

2.3 Time-Domain Technique

Now, we proceed to the discussion of the time-domain technique for the

analysis of steady-state regimes of linear electric circuits excited by peri-

odic non-sinusoidal sources. This technique is based on the formulation of

steady-state analysis as a boundary value problem for ordinary differential

equations with periodic boundary conditions. We illustrate this technique

by the following two examples.

Example 1. Consider the electric circuit shown in Figure 2.16 excited by

the voltage source vs(t), where vs(t) is the periodic function of time shown

in Figure 2.17. Here, V0, T , t0, L and R are given, and it is required to

find i(t) and vR(t) which are periodic with period T :

i(t+ T ) = i(t), vR(t+ T ) = vR(t). (2.110)

It is apparent that this example is identical to Example 1 from the previ-

ous section. This is done on purpose in order for the reader to compare

advantages and disadvantages of the time-domain and frequency-domain

techniques.

The time-domain technique can be presented as a sequence of three dis-

tinct steps.
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Step 1. is to formulate the problem of steady-state analysis as a boundary

value problem with periodic boundary conditions. To this end, we first

write the KVL for the circuit shown in Figure 2.16:

L
di(t)

dt
+Ri(t) = vs(t). (2.111)

It is apparent from Figure 2.17 that the last equation can be written as two

distinct equations for two time intervals:

L
di(t)

dt
+Ri(t) = V0, if 0 < t < t0,

L
di(t)

dt
+Ri(t) = 0, if t0 < t < T.

(2.112)

(2.113)

These two equations can be complemented by two conditions

i(0) = i(T ),

i(t0−) = i(t0+).

(2.114)

(2.115)

The equation (2.114) is the periodic boundary condition which follows from

(2.110) for t = 0, while the equation (2.115) is the interface condition which

expresses the continuity of electric current through the inductor.

The last four equations constitute the boundary value problem for dif-

ferential equations (2.112) and (2.113) with periodic boundary and interface

conditions (2.114) and (2.115), respectively. As soon as the solution of this

boundary value problem is found, the value of i(t) can be found at any

time (i.e., not only in time interval [0, T ]) by using the first equation in

(2.110). Indeed, by using this equation, we can extend the solution from

the time interval [0, T ] to the time interval [T, 2T ], and then from the time

interval [T, 2T ] to the time interval [2T, 3T ] and so on. In other words, by

using the first equation in (2.110), the solution of the boundary value prob-

lem (2.112)-(2.115) with periodic boundary condition can be periodically

extended to the infinite time interval. It is clear that this periodically ex-

tended solution has the physical meaning of the steady state in the electric

circuit shown in Figure 2.16.

Step 2. is to find general solutions of differential equations (2.112) and

(2.113). We start with equation (2.112). This is a linear inhomogeneous

equation of first order with constant coefficients. Its general solution has

two distinct components: a particular solution ip(t) of inhomogeneous equa-

tion (2.112) and a general solution ih(t) of the corresponding homogeneous

equation. Namely,

i(t) = ip(t) + ih(t), (2.116)
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where

L
dip(t)

dt
+Rip(t) = V0, (2.117)

while

L
dih(t)

dt
+Rih(t) = 0. (2.118)

In mathematics, the particular solution of inhomogeneous differential equa-

tion (2.117) is sought in the same form as the right-hand side of the equa-

tion:

ip(t) = B = const. (2.119)

By substituting formula (2.119) into equation (2.117) we find

RB = V0, B =
V0

R
(2.120)

and

ip(t) =
V0

R
. (2.121)

It is apparent that ip(t) is identical to the dc steady state in the electric

circuit shown in Figure 2.16 excited by the dc voltage V0. This observation

is very helpful and can be used for the calculation of particular solutions

of differential equations for more complicated circuits excited by dc or ac

voltage sources. In the latter case, the phasor technique can be used for

the calculation of particular solutions.

Now, we proceed to the calculation of ih(t) by using equation (2.118).

We look for a solution of this equation in the form

ih(t) = A1e
st, (2.122)

where A1 and s are some constants. By substituting the last formula into

equation (2.118), we arrive at

sLA1e
st +RA1e

st = 0, (2.123)

which leads to

sL+R = 0 (2.124)

and

s = −R
L
. (2.125)

Thus, the general solution ih(t) has the form

ih(t) = A1e
−RL t. (2.126)
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By substituting formulas (2.121) and (2.126) into equation (2.116), we find

the general solution of equation (2.112):

i(t) =
V0

R
+A1e

−RL t, if 0 < t < t0. (2.127)

Next, we consider the general solution of equation (2.113). This equation is

identical in structure to equation (2.118). Consequently, its general solution

has the form

i(t) = A2e
−RL t, if t0 < t < T, (2.128)

where A2 is some constant.

Step 3. is to find constants A1 and A2 from the periodic boundary con-

dition (2.114) and interface boundary condition (2.115). These conditions

lead to the following equations:
V0

R
+A1 = A2e

−RTL ,

V0

R
+A1e

−Rt0L = A2e
−Rt0L .

(2.129)

(2.130)

Indeed, by using formula (2.127) for the evaluation of i(0) and formula

(2.128) for the evaluation of i(T ), we end up with equation (2.129). Sim-

ilarly, by using equation (2.127) for the evaluation of i(t0−) and formula

(2.128) for the evaluation of i(t0+), we arrive at equation (2.130). The last

two equations can be easily solved. Indeed, these equations can be written

as follows: 
A1 −A2e

−RTL = −V0

R
,

A1 −A2 = −V0

R
e
Rt0
L .

(2.131)

(2.132)

By subtracting the second equation from the first, we find

A2

(
1− e−RTL

)
=
V0

R

(
e
Rt0
L − 1

)
(2.133)

and

A2 =
V0

R

e
Rt0
L − 1

1− e−RTL
. (2.134)

Now, by substituting the last formula into equation (2.132), after simple

transformations we obtain

A1 =
V0

R

e
R(t0−T )

L − 1

1− e−RTL
. (2.135)
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By using the last two formulas in equations (2.127) and (2.128) we arrive

at the final expression

i(t) =


V0

R

[
1 +

e
R(t0−T )

L − 1

1− e−RTL
e−

Rt
L

]
, if 0 < t < t0,

V0

R

e
Rt0
L − 1

1− e−RTL
e−

Rt
L , if t0 < t < T.

(2.136)

By taking into account that

vR(t) = i(t)R, (2.137)

we find

vR(t) =


V0

[
1 +

e
R(t0−T )

L − 1

1− e−RTL
e−

Rt
L

]
, if 0 < t < t0,

V0
e
Rt0
L − 1

1− e−RTL
e−

Rt
L , if t0 < t < T.

(2.138)

Formulas (2.136) and (2.138) are the final results of our analysis.

It is interesting to deduce from the last formula the expression for vR(t)

in the case when

RT

L
� 1. (2.139)

By using inequality (2.139), we conclude that

e−
R
L t ≈ 1, if 0 < t < T, (2.140)

e−
R
L (T−t0) − 1 ≈ 1− R

L
(T − t0)− 1 = −R

L
(T − t0), (2.141)

1− e−RLT ≈ 1− 1 +
R

L
T =

R

L
T, (2.142)

e
R
L t0 − 1 ≈ 1 +

R

L
t0 − 1 =

R

L
t0. (2.143)

Consequently,

vR(t) ≈


V0

[
1 +
−RL (T − t0)

R
LT

]
= V0

t0
T

= DV0, if 0 < t < t0,

V0

R
L t0
R
LT

= V0
t0
T

= DV0, if t0 < t < T.

(2.144)
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Fig. 2.18

Fig. 2.19

Thus, as expected,

vR(t) ≈ DV0. (2.145)

Example 2. Consider the electric circuit shown in Figure 2.18 excited

by voltage source vs(t), where vs(t) is a periodic function of time given by

the formula

vs(t) = Vm|sinωt| (2.146)

and shown in Figure 2.19. Here, Vm, ω = 2π
T , L, C and R are given, and

it is required to find vR(t) at the steady state, i.e.,

vR(t+ T/2) = vR(t). (2.147)

This problem is encountered in the analysis of rectifiers in power electron-

ics.

Step 1. First, it is apparent that

vR(t) = vC(t). (2.148)
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Then, by using KVL and KCL, we respectively find

L
di(t)

dt
+ vC(t) = vs(t), (2.149)

i(t) = iC(t) + iR(t) = C
dvC(t)

dt
+
vC(t)

R
. (2.150)

By substituting the last formula into equation (2.149), we obtain

LC
d2vC(t)

dt2
+
L

R

dvC(t)

dt
+ vC(t) = vs(t). (2.151)

Now we consider the last equation for the time interval between 0 and T
2 ,

which is the period of vs(t). It is clear from formula (2.146) as well as

Figure 2.19 that for this time interval

vs(t) = Vm sinωt. (2.152)

By substituting this formula into equation (2.151) we end up with

LC
d2vC(t)

dt2
+
L

R

dvC(t)

dt
+ vC(t) = Vm sinωt. (2.153)

This is a second-order differential equation, which is consistent with the

fact that the circuit being discussed has two energy storage elements L and

C. At the steady state, current i(t) and voltage vC(t) satisfy the periodic

boundary conditions

i(0) = i(T/2), (2.154)

vC(0) = vC(T/2). (2.155)

From the last two formulas and formula (2.150) we find

dvC
dt

(0) =
dvC
dt

(T/2). (2.156)

Thus, the problem of the analysis of the steady state is reduced to the

boundary value problem for the second-order differential equation (2.153)

with two periodic boundary conditions (2.155) and (2.156). This concludes

the first step.

Step 2. A general solution of differential equation (2.153) is the sum of a

particular solution v
(p)
C (t) of this equation and a general solution v

(h)
C (t) of

the corresponding homogeneous equation

LC
d2v

(h)
C (t)

dt2
+
L

R

dv
(h)
C (t)

dt
+ v

(h)
C (t) = 0. (2.157)



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 58

58 Fundamentals of Electric Power Engineering

We consider the specific particular solution of equation (2.153) which cor-

responds to the ac steady state of the circuit in Figure 2.18 excited by the

voltage source Vm sinωt. This particular solution can be found by using

the phasor technique. Actually, this has been already done in the previous

section when we used the phasor technique to analyze the circuit shown

in Figure 2.15. There are only two minor differences. First, the phasor of

the voltage source V̂s in our case is given not by formula (2.92) but by the

formula

V̂s = −Vmej
π
2 . (2.158)

Second, in formulas (2.102) and (2.101) n must be omitted. Thus,

v
(p)
C (t) = − VmR√

(ω2LCR−R)
2

+ ω2L2

cos
(
ωt+

π

2
− ϕ

)
, (2.159)

tanϕ =
ωL

R− ω2LCR
. (2.160)

We look for a solution of equation (2.157) in the form

v
(h)
C (t) = Aest. (2.161)

By substituting the last formula into equation (2.157), we find after simple

transformations that

LCs2 +
L

R
s+ 1 = 0. (2.162)

This quadratic equation has two roots

s1 = − 1

2RC
+

√
1

4R2C2
− 1

LC
, (2.163)

s2 = − 1

2RC
−
√

1

4R2C2
− 1

LC
. (2.164)

For simplicity consider the case when s1 and s2 are real and distinct. Other

cases can be treated in a similar way. Then, a general solution of homoge-

neous equation (2.157) is

v
(h)
C (t) = A1e

s1t +A2e
s2t, (2.165)

and a general solution of equation (2.153) is given by the formula

vC(t) = −
VmR cos(ωt+ π

2 − ϕ)√
(ω2LCR−R)

2
+ ω2L2

+A1e
s1t +A2e

s2t. (2.166)

This concludes the second step.
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Step 3. To find constants A1 and A2 we use periodic boundary condi-

tions (2.155) and (2.156). This leads, after simple transformations, to the

following simultaneous equations:

A1

(
1− e

s1T
2

)
+A2

(
1− e

s2T
2

)
=

2RVm sinϕ√
(ω2LCR−R)

2
+ ω2L2

, (2.167)

A1s1

(
1− e

s1T
2

)
+A2s2

(
1− e

s2T
2

)
= − 2ωRVm cosϕ√

(ω2LCR−R)
2

+ ω2L2

.

(2.168)

The solution of these equations is given by the formulas

A1 =
2RVm(s2 sinϕ+ ω cosϕ)

(s2 − s1)
(

1− e
s1T

2

)√
(ω2LCR−R)

2
+ ω2L2

, (2.169)

A2 =
2RVm(s1 sinϕ+ ω cosϕ)

(s1 − s2)
(

1− e
s2T

2

)√
(ω2LCR−R)

2
+ ω2L2

. (2.170)

By substituting the last two formulas into equation (2.166), we obtain the

analytical solution for the steady state of the electric circuit shown in Figure

2.18. This analytical solution is valid for the time interval
[
0, T2

]
. By using

formula (2.147), it can be periodically extended for any time interval.
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Chapter 3

Magnetic Circuit Theory

3.1 Basic Equations of Magnetic Circuit Theory

Many power devices (such as transformers, generators, motors, relays, etc.)

contain magnetic systems consisting of ferromagnetic cores with coils wound

around them. A schematic representation of such magnetic systems is

shown in Figure 3.1. Ferromagnetic cores are used because their magnetic

permeability µc is much larger than the magnetic permeability of free space

µ0. For this reason, ferromagnetic cores can be utilized for guiding of mag-

netic flux. In other words, most of the magnetic field lines are confined to

the ferromagnetic core and form the core flux Φc, while only a small portion

of magnetic field lines leak out and form the leakage flux Φ`. The rigorous

analysis of magnetic systems with ferromagnetic cores is quite complicated

and it requires the solution of Maxwell equations of electromagnetic field

theory. However, there exists an approximate but rather accurate approach

to the analysis of magnetic systems which is called magnetic circuit theory.

This approach is justified when the two inequalities below are valid:

µc � µ0, (3.1)

Φc � Φ`, (3.2)

and it is based on the following assumptions (approximations).

• Assumption 1. Leakage flux Φ` is completely neglected.

• Assumption 2. Magnetic field is assumed to be spatially uniform

within each leg of the iron core and parallel to the sides of the leg.

Here, a leg is understood as a part of the iron core with the same

normal cross-sectional area. Symbols 1, 2, 3, etc. in Figure 3.1

mark the legs of the core.

61
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Fig. 3.1

Magnetic circuit theory equations are derived from the integral form of

Maxwell equations for stationary magnetic fields and the above Assump-

tions 1 and 2. The equations of stationary (static) magnetic field in integral

form can be stated as follows:∮

L

H · d� = Itotal, (3.3)

∮

S

B · ds = 0, (3.4)

B = µH, (3.5)

where H and B are magnetic field and magnetic flux density, respectively,

while µ is magnetic permeability.

The first equation (3.3) is Ampere’s Law, which states that for any

closed path L the line integral of magnetic field is equal to the total current

(Itotal) enclosed by this path. This total current is the algebraic sum of all

current enclosed by the path of integration. The term “algebraic” implies

that some of these currents are taken with positive signs while others are

taken with negative signs. The proper signs are assigned by using the right-

hand rule, which specifies that an enclosed current is taken with positive

sign if its direction coincides with the direction of progress of a right-hand

screw turn in the direction of traverse (tracing) of path L; otherwise, an

enclosed current is taken with negative sign.

The second equation (3.4) is the principle of continuity of magnetic flux,

which states that the magnetic flux through any closed surface S is equal

to zero. In formula (3.4), ds is a vector whose direction coincides with the

direction of outward normal to ds.
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Fig. 3.2

Finally, it must be remarked that equation (3.5) is the simplest form of

the constitutive relation, which is valid when ferromagnetic media can be

characterized by their magnetic permeability. It will be discussed later on

in this chapter that this is not always the case.

Now, we proceed with the derivation of basic equations of magnetic cir-

cuit theory. We start with the discussion of the first Kirchhoff’s Law for

magnetic circuits. This law deals with nodes of magnetic circuits. Here,

a node is defined as a place in a ferromagnetic core where three or more

legs are connected together (see Figure 3.2). Consider an arbitrary closed

surface S which contains the node and apply equation (3.4) to this surface.

According to the first assumption, all magnetic flux leakage is neglected.

This is tantamount to the assumption that all magnetic field lines are con-

fined to the ferromagnetic core. For this reason, equation (3.4) can be

written as follows:

∫
S1

B1 · ds +

∫
S2

B2 · ds +

∫
S3

B3 · ds = 0, (3.6)

where S1, S2 and S3 are the parts of S inside of the first, second and third

legs, respectively, while B1, B2 and B3 are magnetic flux densities within

these legs (see Figure 3.2). It is clear that the integrals in (3.6) are related
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Fig. 3.3

to magnetic fluxes through the legs:
∫

S1

B1 · ds = Φ1, (3.7)

∫

S2

B2 · ds = −Φ2, (3.8)

∫

S3

B3 · ds = Φ3. (3.9)

It is understandable that the negative sign in formula (3.8) appears because

the direction of B2 is opposite to the direction of ds in the integral over

S2. By substituting formulas (3.7), (3.8) and (3.9) into equation (3.6), we

end up with

Φ1 − Φ2 +Φ3 = 0. (3.10)

The last formula implies that the algebraic sum of all fluxes at the node

of the ferromagnetic core is equal to zero. It is apparent that the last

statement as well as the derivation of (3.10) are very general in nature and

applicable to any node. Thus, equation (3.10) can be written in general

form as

∑
k

Φk = 0, (3.11)

and it constitutes the first Kirchhoff’s Law of magnetic circuits.

Next, we introduce the important concept of a drop of magnetic poten-

tial across a leg of ferromagnetic core. Consider an arbitrary leg (i.e., leg

number k) of ferromagnetic core and a path Lk confined to this leg and

connecting its two ends (see Figure 3.3). The drop of magnetic potential
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umk across the leg is defined as

umk =

∫
Lk

Hk · d`. (3.12)

We next demonstrate that this quantity is well defined, i.e., that it does

not depend on the choice of Lk. Indeed, consider another path L′k confined

to the leg and connecting its ends (see Figure 3.3). For this path, the drop

of magnetic potential u′mk is defined as

u′mk =

∫
L′k

Hk · d`. (3.13)

Now,

umk − u′mk =

∫
Lk

Hk · d`−
∫
L′k

Hk · d` =

∮
Lk+L′k

Hk · d` = 0. (3.14)

In the derivation performed in the last formula, the direction of traverse

of L′k was first reversed, the two integrals were combined into one integral

over closed path Lk + L′k and according to Ampere’s Law this integral is

equal to zero because the closed path Lk + L′k is confined to the leg and,

therefore, it cannot enclose any current.

From the last formula we find

umk = u′mk, (3.15)

which proves that umk does not depend on the choice of Lk.

Now, we can proceed to the discussion of the second Kirchhoff’s Law

of magnetic circuits. Consider a “loop” in a ferromagnetic core (see Figure

3.4) created by four legs. Consider a closed path L within this loop and

apply Ampere’s Law to this path. Since each turn of the coil with current

I is enclosed by this path, we find that

Itotal = NI (3.16)

and ∮
L

H · d` = NI, (3.17)

where N is the number of turns of the coil.

The integral in the last formula can be represented as∮
L

H · d` =

∫
L1

H1 · d` +

∫
L2

H2 · d` +

∫
L3

H3 · d` +

∫
L4

H4 · d`. (3.18)
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Fig. 3.4

Each integral in the right-hand side of formula (3.18) can be identified as

the drop of magnetic potential across the corresponding leg,∫

Lk

Hk · d� = umk, (k = 1, 2, 3, 4). (3.19)

It is customary in magnetic circuit theory to call the quantity in the right-

hand side of formula (3.17) magnetomotive force and to use the abbreviation

mmf for this term:

NI = mmf. (3.20)

Now, by substituting formula (3.19) into equation (3.18), which is then

substituted into relation (3.17), and taking into account the notation (3.20),

we arrive at

um1 + um2 + um3 + um4 = mmf. (3.21)

It is apparent that the presented derivation is quite general in nature and

valid for any number of legs in a loop. Thus, it can be stated that for any

loop of ferromagnetic core the following relation is valid:
∑
k

umk = mmf, (3.22)

where mmf is the magnetomotive force acting in the loop. This is the

second Kirchhoff’s Law of magnetic circuits.
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Fig. 3.5

We next turn to the discussion of Ohm’s Law of magnetic circuits. This

Ohm’s Law relates the drop of magnetic potential umk across any leg of

ferromagnetic core to the flux Φk through this leg. The derivation of this

law proceeds as follows. Consider an arbitrary leg (i.e., leg number k) of

length �k, cross-sectional area Ak and permeability µk (see Figure 3.5).

According to the definition (3.12) of the drop of magnetic potential umk we

have

umk =

∫

Lk

Hk · d�. (3.23)

Since the integration path Lk can be arbitrarily chosen within the leg, we

shall use the choice when Lk coincides with one of the magnetic field lines.

Due to this choice and also using Assumption 2, the integral in the last

formula can be simplified as follows:

umk =

∫

Lk

Hk · d� =

∫

Lk

Hkd� = Hk

∫

Lk

d� = Hk�k. (3.24)

The first simplification occurs because Hk and d� have the same directions

since Lk coincides with the magnetic field line. The second simplification

occurs because the magnetic field is spatially uniform within the leg ac-

cording to Assumption 2.

Next, formula (3.24) can be written as follows:

umk = µkHk
�k
µk

. (3.25)

By taking into account that

Bk = µkHk, (3.26)
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we find

umk = Bk
`k
µk
, (3.27)

or

umk = BkAk
`k

µkAk
. (3.28)

By definition, magnetic flux Φk through the leg is given by the formula

Φk =

∫
Ak

Bk · ds. (3.29)

According to Assumption 2, magnetic flux density Bk is normal to Ak and,

consequently, has the same direction as ds. Furthermore, according to the

same assumption, Bk is spatially uniform in the leg. Consequently,

Φk =

∫
Ak

Bk · ds =

∫
Ak

Bkds = Bk

∫
Ak

ds = BkAk. (3.30)

By using the last formula in equation (3.28) we arrive at

umk = Φk
`k

µkAk
. (3.31)

Finally, by introducing the reluctance Rmk of the leg as

Rmk =
`k

µkAk
, (3.32)

we arrive at Ohm’s Law

umk = ΦkRmk. (3.33)

This completes the derivation of the basic equations of magnetic circuit the-

ory. This theory can be summarized as follows. Each leg of ferromagnetic

core is characterized by three quantities: drop of magnetic potential umk
across it, magnetic flux Φk through it and magnetic reluctance Rmk. These

quantities are related to one another and to magnetomotive forces (i.e., to

currents in coils) by the basic equations (3.11), (3.22), (3.32) and (3.33).

The close examination of these equations reveals that their mathematical

structure is identical to the mathematical structure of basic equations of

resistive electric circuits. This is the principle of mathematical similarity

between the basic equations of magnetic and electric circuits. This principle

is illustrated in the following table.
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Table

Magnetic Circuits Electric Circuits∑
k

Φk = 0 ⇐⇒
∑
k

ik = 0 (3.34)∑
k

umk = mmf ⇐⇒
∑
k

vk = emf (3.35)

mmf = NI ⇐⇒ emf = vs (3.36)

umk = ΦkRmk ⇐⇒ vk = ikRk (3.37)

Rmk =
`k

µkAk
⇐⇒ Rk =

`k
σkAk

(3.38)

It is apparent that the mathematical structure of the equations in the right-

hand column of the table is identical to the mathematical structure of the

equations in the left-hand column of the table. From the purely mathemat-

ical point of view, the only difference in these two sets of equations is in the

notation of the variables. Indeed, if we replace Φk by ik, umk by vk, mmf

by emf, Rmk by Rk, µk by σk (and the other way around), then one set of

equations is transformed into the other. The question can be immediately

asked what the utility of this principle of mathematical similarity is. The

answer is that all techniques that have been developed for the analysis of

electric circuits can be used for the analysis of magnetic circuits. This is so

because the analysis techniques for electric circuits have been developed by

using the mathematical structure of the basic equations for these circuits

and this structure is the same as for magnetic circuits. There is another

utility of this principle of mathematical similarity that was used in the

past, i.e., before the advent of powerful computers. Namely, electric cir-

cuits can be used for analog modeling of magnetic circuits. The advantage

of such modeling is that electric circuits are easier and cheaper to assemble

and electric circuit measurements are usually more accurate than magnetic

measurements.

It must be stressed that the similarity between magnetic and electric

circuits is purely mathematical in nature. There is no physical similarity,

and quantities which describe magnetic and electric circuits have different

physical nature and, hence, different physical dimensions.

Now, we shall discuss how the magnetic circuit theory can be used

for the analysis of magnetic systems. In this analysis, the geometry of

ferromagnetic cores and currents in coils are given and it is required to find
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Fig. 3.6

magnetic fluxes through core legs. We illustrate below this analysis by two

simple examples.

Example 1. Consider the magnetic system shown in Figure 3.6a. The

current I through the coil and its number of turns N are given as well

as geometry and magnetic permeability of each leg, i.e., �k, Ak, µk,

(k = 1, 2, 3, 4). It is required to find the flux Φ through the legs. This

flux is the same for all legs because they are connected in series; this also

immediately follows from the basic equation (3.11).

Step 1. In this step, we replace the actual magnetic system by the equiv-

alent magnetic circuit. In doing so, we replace the coil with current I by

the magnetomotive force

mmf = NI, (3.39)

and each leg of the ferromagnetic core by the magnetic reluctance

Rmk =
�k

µkAk
, (3.40)

and connect these reluctances in the magnetic circuit in the same way as

the corresponding legs are connected in the ferromagnetic core (see Figure

3.6b). It is apparent that mmf and Rmk can be easily computed because

N , I, �k, Ak and µk are given.

Step 2. By using the principle of mathematical similarity between mag-

netic and electric circuits, we can use the same technique for the analysis of

the magnetic circuit in Figure 3.6 as for the corresponding electric circuit.
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In the case being discussed, all magnetic reluctances are connected in series;

consequently, the flux Φ can be found as follows:

Φ =
mmf∑4
k=1Rmk

. (3.41)

Now, by using formulas (3.39) and (3.40) in the last equation, we end up

with the following explicit formula for the magnetic flux:

Φ =
NI∑4

k=1
`k

µkAk

. (3.42)

In some applications, it may be of interest to find the current I which will

guarantee the desired flux Φ. From formula (3.42), the answer is immediate:

I =
1

N
Φ

4∑
k=1

`k
µkAk

. (3.43)

Example 2. Consider the magnetic system shown in Figure 3.7. The

current I and the number of turns N are given as well as geometry and

magnetic permeability of each leg `k, Ak, µk, (k = 1, 2, 3). It is required to

find all fluxes Φk, (k = 1, 2, 3).

Step 1. In this step, as before, we replace the actual magnetic system

by the equivalent magnetic circuit. In doing so, we replace the coil by the

magnetomotive force

mmf = NI, (3.44)

and each leg of the ferromagnetic core by its magnetic reluctance

Rmk =
`k

µkAk
, (3.45)

and connect these reluctances in the magnetic circuit in the same way as

the corresponding legs are connected in the ferromagnetic core (see Figure

3.7b). It is apparent that mmf and Rmk can be easily computed by using

the given data.

Step 2. We shall analyze the magnetic circuit in Figure 3.7b in exactly

the same way as we would analyze the similar electric circuit. Namely,

we identify that reluctances Rm2 and Rm3 are connected in parallel and

can be replaced by the equivalent reluctance. This equivalent reluctance

is connected in series with reluctance Rm1 and, consequently, they can be
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replaced by the overall equivalent reluctance Rme (see Figure 3.7c), which

is given by the formula

Rme = Rm1 +
Rm2Rm3

Rm2 +Rm3
(3.46)

or

Rme =
Rm1Rm2 +Rm1Rm3 +Rm2Rm3

Rm2 +Rm3
. (3.47)

Step 3. From the magnetic circuit shown in Figure 3.7c, we find

Φ1 =
mmf

Rme
(3.48)

or

Φ1 =
mmf (Rm2 +Rm3)

Rm1Rm2 +Rm1Rm3 +Rm2Rm3
. (3.49)
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Fig. 3.8

Having found Φ1, we turn to the circuit shown in Figure 3.7b and find

Φ2 and Φ3 by using the flux divider rule, which is identical to the current

divider rule for parallel electric circuits. This leads to formulas

Φ2 =
mmfRm3

Rm1Rm2 +Rm1Rm3 +Rm2Rm3
, (3.50)

Φ3 =
mmfRm2

Rm1Rm2 +Rm1Rm3 +Rm2Rm3
. (3.51)

By substituting formulas (3.44) and (3.45) into equations (3.49), (3.50) and

(3.51), we find explicit expressions for fluxes in terms of the given data.

It is apparent from the above two examples that the magnetic circuit

theory is a quite simple and powerful tool for computing fluxes in ferromag-

netic cores of magnetic systems. Now, we shall extend the magnetic circuit

theory to the case when ferromagnetic cores may have air gaps. Such air

gaps are typical for electric power devices. In such air gaps, electromag-

netic interaction between currents and magnetic fields occurs, and as a

result, mechanical energy is converted into electric energy or the other way

around. Thus, air gaps are the regions where energy conversion occurs.

We consider the simplest magnetic system with an air gap shown in

Figure 3.8a, and shall demonstrate that in the framework of the magnetic

circuit theory the air gap can be treated as another leg of the magnetic

system and can be represented by the appropriate magnetic reluctance (see

Figure 3.8b). This demonstration is of general nature and applicable to

more complicated magnetic circuits.
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To start the derivation, we consider a magnetic field line L which goes

through the core and the gap. We next apply Ampere’s Law for path L:∮
L

H · d` = NI. (3.52)

It is apparent that the integral in formula (3.52) can be represented as the

sum of two integrals,∮
L

H · d` =

∫
`c

Hc · d` +

∫
δ

Hδ · d` = NI, (3.53)

where `c and δ are the parts of L which are within the ferromagnetic core

and the gap, respectively, while Hc and Hδ are magnetic fields in the core

and the gap, respectively. By taking into account that `c and δ are parts of

the magnetic field line L, we conclude that the directions of d` and magnetic

fields along `c and δ coincide. Furthermore, according to Assumption 2 used

in magnetic circuit theory, it can be assumed that magnetic field is spatially

uniform in the ferromagnetic core as well as in the air gap. These facts lead

to the following simplification of formula (3.53):

Hc`c +Hδδ = mmf, (3.54)

where `c and δ in the last equation can be construed as the average length

of the core and the length of the gap, respectively.

Now, we shall invoke the continuity of the normal component of the

magnetic flux density at the interface between the air gap and the ferro-

magnetic core,

Bcn = Bδn. (3.55)

The last relation can also be written as

µcHc = µ0Hδ, (3.56)

because it is assumed that the magnetic field line is perpendicular to the

core-gap interface. By using the last formula in equation (3.54), we find

Hc

(
`c +

µc
µ0
δ

)
= mmf, (3.57)

which leads to

Hc =
mmf

`c + µc
µ0
δ
. (3.58)

Within the framework of the two assumptions of the magnetic circuit the-

ory, we have

Φc = Φδ = AcBc = AcµcHc. (3.59)
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By substituting formula (3.58) into the last equation, we derive

Φc = Φδ =
Acµc mmf

`c + µcδ
µ0

=
mmf

`c
µcAc

+ δ
µ0Ac

. (3.60)

It is apparent that the reluctance of the core is

Rmc =
`c

µcAc
. (3.61)

As mentioned before, we shall treat the air gap as another leg of the mag-

netic system. This leg has length δ, permeability µ0 and cross-sectional

area Ac. This implies that the magnetic reluctance Rmδ of this leg is given

by the formula

Rmδ =
δ

µ0Ac
. (3.62)

From formulas (3.60), (3.61) and (3.62) we conclude

Φδ = Φc =
mmf

Rmc +Rmδ
. (3.63)

The last equation implies the validity of the magnetic circuit representation

(see Figure 3.8b) of the magnetic system shown in Figure 3.8a.

It is interesting and instructive to compare the values of magnetic re-

luctances of the ferromagnetic core and the air gap. To this end, consider

the ratio of Rmc to Rmδ, which according to formulas (3.61) and (3.62) is

given by

Rmc
Rmδ

=
`c
δ

µ0

µc
. (3.64)

In typical designs,

`c ≈ 50δ, µc > 103µ0, (3.65)

which leads to the conclusion that

Rmc
Rmδ

< 0.05 and Rmc � Rmδ. (3.66)

According to formula (3.63), this means that

Φδ ≈
mmf

Rmδ
=
µ0ANI

δ
. (3.67)

Thus, the smaller the air gap, the stronger the magnetic flux and magnetic

fields in the air gap. This fact immediately reveals that ferromagnetic

cores serve two useful purposes as illustrated by Figure 3.9. First, they

reduce stray (useless) magnetic fields and, second, they concentrate and
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appreciably enhance magnetic fields in desired regions identified as air gaps.

Indeed, according to Figure 3.9a, when the ferromagnetic core is not used,

the magnetic field created by the coil with current I is spread out. As a

result, only a small portion of the magnetic field may reach the desired

region, while most of the magnetic field manifests itself as a stray field. On

the contrary, when a ferromagnetic core is used (see Figure 3.9b), this core

due to its high magnetic permeability guides practically all magnetic field

lines through the air gap resulting in the focusing and enhancement (also

due to high µc) of magnetic field in the desired region of the air gap. In

addition, since practically all magnetic field lines are confined to the core,

undesired stray magnetic field is dramatically reduced.

It has been assumed in our discussion that all of the magnetic field lines

in the air gap are confined to the same cross-sectional area as in the fer-

romagnetic core (see formula (3.62)). This assumption ignores the fringing

effect shown in Figure 3.10, when magnetic field lines appear around the

sides of the air gap. It is intuitively apparent that the smaller the air gap

δ, the smaller the fringing effect. For this reason, the fringing effect is often

taken into account by using in formula (3.62) effective cross-sectional area

Ae instead of Ac. The effective cross-sectional area is often obtained by

adding δ to each side of Ac (see Figure 3.11).
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Fig. 3.11

3.2 Application of Magnetic Circuit Theory to the Calcu-

lation of Inductance and Mutual Inductance

In this section, we demonstrate that the magnetic circuit theory can be

effectively used for the calculation of inductance and mutual inductance of

coils wound around legs of ferromagnetic cores. We start with the definition

of inductance. Consider a coil energized with current I (see Figure 3.12).

This current creates a magnetic field that can be represented by magnetic

field lines. In general, these field lines may link a different number of turns

of the coil. This may result in different magnetic fluxes linking a different

number of turns. Suppose that magnetic flux Φk links Nk turns of the coil.

Then, the total flux linkage of the coil is defined as follows:

ψ =
∑
k

NkΦk. (3.68)

Now, the inductance can be defined as the following ratio:

L =
ψ

I
. (3.69)
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In the case when the turns of the coil are closely spaced, the last two

formulas can be modified. Namely, in this case practically the same flux Φ

links all N turns and formula (3.68) can be written as

ψ = NΦ, (3.70)

which leads to the following expression for the inductance:

L =
NΦ

I
. (3.71)

It is important to stress that, although the inductance is defined as the ratio

of the flux linkage to the current, it does not depend on the flux linkage

or the current. The inductance depends on the number N of turns of the

coil and its geometry. In the case of closely spaced turns, that is, when

formula (3.71) is valid, the inductance is proportional to the square of the

number of turns (N2). This suggests that the inductance can be increased

by increasing the number of turns. Another efficient way to increase the

inductance is to use ferromagnetic cores with high magnetic permeability.

In fact, this approach is widely used in electric power engineering. Figure

3.13 presents one possible realization of this approach. In this case, the

flux linkage ψ of the coil has two distinct components: the main (core)

component ψc which is due to the magnetic field lines entirely confined to

the ferromagnetic core and the “leakage” component ψ` which is due to the

magnetic field lines that leak out,

ψ = ψc + ψ`. (3.72)

By substituting the last relation into formula (3.69), we find

L =
ψc
I

+
ψ`
I
. (3.73)
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This means that the inductance also has two distinct components,

L = Lm + L�, (3.74)

where Lm is the main inductance defined as

Lm =
ψc

I
, (3.75)

while L� is the leakage inductance specified as

L� =
ψ�

I
. (3.76)

It is apparent that for ferromagnetic cores with high magnetic permeability

ψc � ψ�, (3.77)

which implies that

Lm � L�, (3.78)

and, consequently,

L ≈ Lm. (3.79)

It turns out that the main inductance can be effectively computed by using

the magnetic circuit theory. Below, we shall first derive the general formula

for Lm that will be next illustrated by two examples.

Suppose that we want to compute the inductance of the coil wound

around some leg of a ferromagnetic core. Since inductance does not depend

on a specific value of the current through the coil, we will assume that the

coil is excited by some current I. Now, we replace the actual magnetic
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system by the equivalent magnetic circuit. In doing so, we replace the coil

with current I by the magnetomotive force

mmf = NI (3.80)

and legs of the ferromagnetic core by the appropriate magnetic reluctances

which are connected in the magnetic circuit in the same way as the corre-

sponding legs are connected in the ferromagnetic core. A general case of

such magnetic circuit is shown in Figure 3.14a, where Φc is the core mag-

netic flux through the leg around which the coil is wound, while the rest of

the magnetic circuit is passive (i.e., without any mmf sources). This passive

magnetic circuit is represented by the box to emphasize the general nature

of our discussion. Any passive circuit can be represented by the equivalent

magnetic reluctance with respect to the mmf terminals (see Figure 3.14b).

Consequently,

Φc =
mmf

Rme
=

NI

Rme
. (3.81)

It is apparent that the core magnetic flux Φc links all N turns of the coil.

This implies that

ψc = NΦc =
N2I

Rme
. (3.82)

Now, by using formulas (3.75), (3.79) and (3.82), we derive

L ≈ Lm =
N2

Rme
. (3.83)

The last formula clearly reveals that the inductance is indeed proportional

to the square of the number of coil turns and depends on geometry and mag-

netic properties of the ferromagnetic core through the equivalent magnetic

reluctance Rme. The last formula is very general because it is applicable
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to any geometry of the ferromagnetic core. The usefulness of this general

formula is illustrated below by the following two examples.

Example 1. Consider the magnetic system shown in Figure 3.15a and

assume that the number N of coil turns and magnetic permeability µc of

the ferromagnetic core are given along with geometry of each leg: �k, Ak,

(k = 1, 2, 3). It is required to find the inductance of the coil. The equivalent

magnetic circuit is shown in Figure 3.15b. It is clear from this figure that

the equivalent magnetic reluctance with respect to the terminals of the

mmf is given by the formula (see Example 2 and equation (3.47) from the

previous section)

Rme =
Rm1Rm2 +Rm1Rm3 +Rm2Rm3

Rm2 +Rm3
. (3.84)

By using the last relation in formula (3.83), we find

L ≈ Lm = N2 Rm2 +Rm3

Rm1Rm2 +Rm1Rm3 +Rm2Rm3
. (3.85)

This expression can be appreciably simplified in the practical (symmetrical)

case when legs 2 and 3 are identical, have the same permeability µc as leg

1 and

A2 =
A1

2
. (3.86)

In this case,

Rm2 = Rm3 =
2�2
µcA1

, (3.87)

Rm1 =
�1

µcA1
. (3.88)



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 82

82 Fundamentals of Electric Power Engineering

Fig. 3.16

By using the last two equations in formula (3.85), we end up with

L ≈ Lm =
µcA1N

2

�1 + �2
. (3.89)

The last expression clearly reveals that the inductance can be substantially

enhanced by using high magnetic permeability ferromagnetic cores.

Example 2. Consider the magnetic system shown in Figure 3.16a and

assume that the number N of coil turns is given along with geometry and

permeability of the core as well as the gap: �c, Ac, µc, δ. It is required

to find the inductance of the coil. Figure 3.16b represents the equivalent

magnetic circuit for the magnetic system shown in Figure 3.16a. From this

equivalent magnetic circuit and formula (3.83), we find

L ≈ Lm =
N2

Rmc +Rmδ
=

µcAcN
2

�+ µc

µ0
δ
. (3.90)

In the typical case when Rmc � Rmδ, the last formula can be simplified as

L ≈ Lm ≈ N2

Rmδ
=

µ0AcN
2

δ
. (3.91)

This equation reveals the important fact that the inductance can be effec-

tively controlled by changing the air gap length. This fact is used in many

applications.

It is clear from the presented discussion that the general approximate

formula (3.83) for the inductance L has been derived by neglecting leakage

inductance L�. The leakage inductance cannot be accounted for within the

framework of the magnetic circuit theory because this theory completely

ignores leakage fluxes. At first, it may be thought that it is only natural
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to neglect leakage inductance because it is quite small. However, this is of-

ten not the case and in many engineering applications leakage inductances

play an important and even crucial role. This is true when the perfor-

mance of devices is based on strong electromagnetic coupling between coils

(windings). This strong coupling is typical for transformers and induction

motors and leakage inductances play important roles in the theory of these

devices. The fact that the magnetic circuit theory is helpless in calculation

of leakage inductances implies that more sophisticated magnetic field com-

putation techniques must be employed for this purpose. These techniques

are beyond the scope of our current discussion.

Next, we proceed with the discussion of the calculation of mutual induc-

tance and we start this discussion with the definition of mutual inductance.

Consider two coils and two distinct cases: a) the first coil is energized

(I1 6= 0), while the second coil is not (see Figure 3.17a); and b) the second

coil is energized (I2 6= 0), while the first coil is not (see Figure 3.17b). In

case a), the current I1 through the first coil creates the magnetic field which

is represented by field lines. Some of these field lines may link the turns

of the second coil, resulting in the flux linkage ψ21 (see Figure 3.17a). The

subscripts in ψ21 indicate that this is the flux linkage of the second coil due

to the current through the first coil. The mutual inductance M12 between

the first and second coils is defined as the ratio

M12 =
ψ21

I1
. (3.92)

In case b), some field lines of the magnetic field created by the current I2
through the second coil link the turns of the first coil resulting in the flux

linkage ψ12 (see Figure 3.17b). The mutual inductance M21 between the

second and the first coils is defined as the ratio

M21 =
ψ12

I2
. (3.93)
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It is proved in the electromagnetic field theory that the following equality

(often called reciprocity principle) is valid:

M12 = M21 = M. (3.94)

Mutual inductances are defined above as the ratios of flux linkages to cur-

rents. However, the mutual inductance M does not depend on flux linkages

or current; rather, it depends on the number of turns N1 and N2 of the

first and the second coils (namely, their product N1N2), as well as their

geometry and mutual location.

It is apparent from the definition of mutual inductance that it can be

viewed as a measure of electromagnetic coupling between two coils. In-

deed, the larger the mutual inductance, the larger the flux linkage of one

coil created by the same current through another coil, and, consequently,

the larger the electromagnetic coupling between the two coils. It is impor-

tant to stress that the mutual inductance as the measure of electromagnetic

coupling between two coils depends on the number of turns. To illustrate

this, it is instructive to consider the case when the second coil is quite re-

mote from the first coil and, consequently, all turns of the second coil are

linked by small magnetic fluxes created by the current through the first coil.

If the turns of the second coil are closely spaced, then practically the same

small magnetic flux Φ21 links all the turns of the second coil and the flux

linkage of the second coil is equal to ψ21 = N2Φ21. Thus, by using a very

large number N2 of turns of the second coil, ψ21 as well as M = M12 can be

appreciably enhanced despite the fact that only a very small number of field

lines link the second coil. There is another effective way to enhance elec-

tromagnetic coupling between two coils, that is, by using a ferromagnetic

core (see Figure 3.18). Indeed, a ferromagnetic core with high magnetic

permeability is very good for guiding magnetic field lines from the loca-

tion of the first coil to the location of the second coil (Figure 3.18b). This

clearly suggests that ferromagnetic cores can be used for the enhancement

and control of mutual inductance. This property of ferromagnetic cores is

utilized in the design of transformers and electric machines. It turns out

that the magnetic circuit theory can be effectively used for the calculation

of mutual inductance of coils whose electromagnetic coupling is assisted by

ferromagnetic cores. We present the general algorithm for such calculations

by considering the following example.

Example. Consider a magnetic system with two coils shown in Figure

3.19a. It is assumed that the number of turns N1 and N2 of the first coil

and second coil respectively are given as well as geometry and magnetic
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Fig. 3.19

permeability of each leg of the ferromagnetic core. It is required to derive

the formula for the mutual inductance. The general algorithm for the cal-

culation of the mutual inductance consists of the following three steps.

Step 1. We assume that the first coil is energized by an arbitrary current

I1, while the second coil is not energized (I2 = 0). Then we replace such

excited magnetic system by the equivalent magnetic circuit. In doing so,

we replace the first coil by the magnetomotive force

mmf1 = N1I1 (3.95)

and each leg of the ferromagnetic core by its magnetic reluctance

Rmk =
�k

µkAk
, (k = 1, 2, 3), (3.96)
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and we connect these reluctances in the magnetic circuit in Figure 3.19b in

the same way as the corresponding legs are connected in the ferromagnetic

core. It is clear that all Rmk can be computed on the basis of the given

data.

Step 2. The purpose of this step is to find the flux Φ2 through the second

leg as a linear function of I1. This has been already done in Example 2 of

the previous section where the following formula was derived (see equation

(3.50)):

Φ2 =
mmf1Rm3

Rm1Rm2 +Rm1Rm3 +Rm2Rm3
, (3.97)

or, by using equation (3.95),

Φ2 =
N1I1Rm3

Rm1Rm2 +Rm1Rm3 +Rm2Rm3
. (3.98)

Step 3. It is clear that

ψ21 = N2Φ2 =
N1N2I1Rm3

Rm1Rm2 +Rm1Rm3 +Rm2Rm3
. (3.99)

Finally, by using the last formula in the definition (3.92) of the mutual

inductance, we find

M = M12 =
N1N2Rm3

Rm1Rm2 +Rm1Rm3 +Rm2Rm3
. (3.100)

Thus, as discussed before, the mutual inductance depends on the product

of turns of the two coils as well as geometry and magnetic permeability of

the legs of the ferromagnetic core.

The last formula can be appreciably simplified in the case when legs 2

and 3 are identical, have the same permeability µc as leg 1 and each of their

cross-sectional areas is half the cross-sectional area of the first leg. Under

these conditions, relations (3.87) and (3.88) are valid and the last formula

can be transformed to arrive at

M =
µcA1N1N2

2(`1 + `2)
. (3.101)

The three-step algorithm used in this example is of general nature and can

be used for the calculation of mutual inductances of coils with ferromagnetic

cores of any geometry and number of legs.
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3.3 Magnetic Circuits with Permanent Magnets

In our previous discussion, we have considered magnetic systems excited by

coils with currents. This type of excitation requires power supplies. There

exists another way to excite magnetic systems by using permanent magnets.

This type of excitation can be realized without any power supplies and, for

this reason, it is very attractive in many power engineering applications. In

this section, we shall further develop the magnetic circuit theory to make

it applicable to the analysis of magnetic systems excited (energized) by

permanent magnets.

We shall first discuss what a permanent magnet is. To start this dis-

cussion, we need some simple facts related to the phenomenon of magnetic

hysteresis. This phenomenon is exhibited by ferromagnetic materials and

one of its simplest manifestations is the formation of hysteresis loops. This

is illustrated by Figure 3.20, where a symmetric hysteresis loop is presented.

This loop is formed as a result of periodic in time variations of magnetic

field H between two extremum values Hm and −Hm. As far as the shape

of hysteresis loop is concerned, there are two types of ferromagnetic ma-

terials which are important in power applications. They are soft magnetic

materials and hard magnetic materials. Soft magnetic materials are char-

acterized by narrow hysteresis loops (see Figure 3.21a) and these materials

are used for magnetic cores of power devices. Hard magnetic materials have

wide hysteresis loops (see Figure 3.21b) and these materials are used for

permanent magnets as well as in magnetic data storage (hard drives). It

is apparent that the notion of magnetic permeability is not applicable to

hysteretic magnetic materials and the constitutive relation (3.5) must be
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replaced by the relation

B = µ0(M+H), (3.102)

where M is the magnetization vector.

Hysteresis loops are often measured for toroidal samples for which B,

H and M have the same directions. In this case, the vectorial equation

(3.102) can be replaced by a scalar one,

B = µ0(M +H), (3.103)

or

M =
B

µ0
−H. (3.104)

By using the last equation for each value of magnetic field H, the B-H

hysteresis loop shown in Figure 3.21b can be transformed into the M -H

loop shown in Figure 3.22. In this figure, there are four points of special

significance. They are (0,Mr), (0,−Mr), (Hc, 0) and (−Hc, 0), where Mr
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is called remanent (or residual) magnetization, while Hc is called coerciv-

ity. The origin of this terminology is quite transparent. Magnetization

Mr is called remanent or residual because this is the magnetization exist-

ing for zero magnetic field. Magnetic field Hc is called coercivity because

this magnetic field is needed to be applied to coerce magnetization into

changing its direction. As far as application of hard magnetic materials for

permanent magnets is concerned, there are three figures of merit: rema-

nent magnetization, coercivity and the squareness of hysteresis loop. It is

demonstrated below that remanent magnetization determines the strength

of permanent magnets (i.e., the strength of their magnetic field), Hc de-

termines the stability of permanent magnets (i.e., their ability to sustain

remanent magnetization under demagnetizing fields) and squareness of hys-

teresis loop determines the ability of permanent magnets to maintain their

strength under demagnetizing fields. As far as the squareness of hysteresis

loop is concerned, the ideal permanent magnet materials (and ideal perma-

nent magnets) can be defined as materials (or magnets) for which

M(H) = ±Mr = ±Ms for −Hc < H < Hc, (3.105)

where Ms is the saturation magnetization. There are permanent magnet

materials whose hysteresis loops have almost ideal squareness. These are

samarium-cobalt (SmCo) and neodymium-iron-boron (NdFeB) materials.

For samarium-cobalt materials, µ0Ms = 0.8-1 Tesla and Hc = 400 − 600

kA/m, while for neodymium-iron-boron materials µ0Ms � 1.2 Tesla and

Hc � 850 kA/m. Thus, NdFeB materials have somewhat better figures

of merit than SmCo materials. Furthermore, neodymium is much more

abundant than samarium and, for this reason, NdFeB magnets are more
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cost effective. These magnets are made from powder through the steps of

pressing, sintering and heat treatment.

Now, we can define what a permanent magnet is. A permanent magnet

is a piece of hard magnetic material (usually of cylindrical shape) with

remanent magnetization (see Figure 3.23). This permanent magnet creates

magnetic field due to its remanent magnetization. We shall discuss the

magnetic field of such permanent magnet by using the “magnetic charge”

model. To arrive at this model, we assume that the magnetization M is

parallel to the magnet sides and spatially uniform. This implies that

div M = 0. (3.106)

By recalling that

div B = 0 (3.107)

and that in the space around the magnet

B = µ0H, (3.108)

we find from equations (3.102), (3.106) and the last two formulas that

div H = 0 (3.109)

inside (V +) and outside (V −) the permanent magnet. Furthermore,

curl H = 0, (3.110)

because the magnetic field created only by the permanent magnet without

any external current sources is being considered. It is clear that the mag-

netic field of an ideal permanent magnet does not have any volume sources.
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We shall demonstrate next that this field has only surface sources located

on the top S1 and the bottom S2 of the permanent magnet. To this end,

we shall use the continuity of normal component of magnetic flux density

on S1 and S2,

B−n = B+
n , (3.111)

where superscripts “−” and “+” indicate the values of Bn from outside and

inside the permanent magnet.

By using formulas (3.102) and (3.108) the boundary condition (3.111)

can be written as follows:

µ0H
−
n = µ0H

+
n + µ0Ms on S1 (3.112)

and

µ0H
−
n = µ0H

+
n − µ0Ms on S2, (3.113)

where Ms = |M|. It is apparent that the difference in the form of the last

two equations is due to the fact that the direction of M coincides with the

outward normal to S1 and it is opposite to the outward normal to S2.

The last two equations can be written as follows:

H−n −H+
n = Ms on S1 (3.114)

and

H−n −H+
n = −Ms on S2. (3.115)

Thus, the normal components of magnetic field of an ideal permanent mag-

net are discontinuous on S1 and S2, and this discontinuity is the source

(the origin) of the magnetic field. To visualize this magnetic field, we intro-

duce the “magnetic charge” model. In this model (see Figure 3.23b), the

remanent magnetization M is removed and replaced by fictitious (virtual)

magnetic charges σm with densities

σm = µ0Ms on S1 (3.116)

and

σm = −µ0Ms on S2. (3.117)

Then, like in electrostatics, the normal component of the magnetic field

created by these surface magnetic charges satisfies the boundary conditions

H−n −H+
n =

σm
µ0

= Ms on S1 (3.118)



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 92

92 Fundamentals of Electric Power Engineering

and

H−n −H+
n =

σm
µ0

= −Ms on S2. (3.119)

These boundary conditions are identical to the boundary conditions (3.114)

and (3.115), respectively. Furthermore, the magnetic field created by sur-

face magnetic charges σm satisfies the equations (3.109) and (3.110) in V −

and V +. Thus, the actual magnetic field of the permanent magnet and the

magnetic field created by magnetic charges σm satisfy the same equations

and boundary conditions. Consequently, these two magnetic fields are iden-

tical. The magnetic field created by σm is easy to visualize. The magnetic

field lines of this field are directed from positive charges on S1 to negative

charges on S2 (see Figure 3.23). Thus, these magnetic field lines are di-

rected opposite to the remanent magnetization M inside of the permanent

magnet. For this reason, the magnetic field inside the permanent magnet

is called demagnetizing field. The magnetic field outside the permanent

magnet can be utilized for the excitation of a magnetic system.

It is clear from the presented discussion that the larger the remanent

(saturation) magnetization Ms, the larger |σm| and the stronger the mag-

netic field created by these charges. In other words, the larger Ms, the

stronger the permanent magnet. Larger Ms also results in stronger de-

magnetizing field. Furthermore, this demagnetizing field is quite strong for

short permanent magnets because positive and negative charges σm are less

spatially separated for short magnets. For strong permanent magnets to

sustain strong demagnetizing fields, their coercivity Hc must be sufficiently

large. Finally, the squareness of hysteresis M -H loop guarantees that the

magnetization of a permanent magnet is not affected by the demagnetiz-

ing field and it remains equal to Ms. In other words, the strength of the

permanent magnet is not degraded by its demagnetizing field. Thus, it is

evident that Ms, Hc and the squareness of M -H loops are the figures of

merit of the permanent magnet.

Next, we shall demonstrate that within the framework of the magnetic

circuit theory the ideal permanent magnet can be represented as a nonideal

flux source. The reasoning proceeds as follows. Consider a cylindrical ideal

permanent magnet with remanent magnetization Ms, length `0 and normal

cross-sectional area A0 (see Figure 3.24a). Inside of the permanent mag-

net, there exists the demagnetizing field H which is assumed to be uniform

within the framework of the magnetic circuit theory. Since the demagnetiz-

ing magnetic field is directed opposite to magnetization, equation (3.102)
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Fig. 3.24

can be written in the form

B = µ0Ms − µ0H. (3.120)

We shall multiply both sides of the last formula by A0,

BA0 = µ0MsA0 − µ0A0H, (3.121)

and shall take into account that the flux Φ through the permanent magnet

is

Φ = BA0, (3.122)

while the source flux Φs can be introduced as

Φs = µ0MsA0. (3.123)

From formulas (3.121), (3.122) and (3.123) we conclude that

Φ = Φs − µ0A0H. (3.124)

Next, the last formula can be transformed as follows:

Φ = Φs −
H�0
�0

µ0A0

. (3.125)

Finally, we introduce the drop of magnetic potential um across the perma-

nent magnet as

um = H�0 (3.126)
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and the permanent magnet reluctance

Rms =
`0

µ0A0
. (3.127)

Then, equation (3.125) can be written in the form

Φ = Φs −
um
Rms

. (3.128)

It is apparent that the last equation can be interpreted as the equation of

the nonideal flux source shown in Figure 3.24b. Indeed, according to this

figure, we have

Φ = Φs − Φ′ (3.129)

and

Φ′ =
um
Rms

. (3.130)

By substituting the last formula into equation (3.129), we arrive at the

relation (3.128).

In magnetic circuit calculations, it may be convenient to represent the

ideal permanent magnet as a nonideal magnetomotive force. This repre-

sentation can be obtained through the equivalent transformation of the

nonideal flux source into nonideal mmf, illustrated in Figure 3.25. It is

clear that the transformation shown in Figure 3.25 will be equivalent with

respect to the magnetic circuit in the box if terminal relations between Φ

and um are identical. Indeed, the equivalence is then the consequence of the

fact that the box magnetic circuits in Figures 3.25a and 3.25b are described

by identical mathematical equations. According to Figure 3.25a, we have

Φ = Φs −
um
Rms

, (3.131)

while according to Figure 3.25b we get

mmf = ΦR′ms + um, (3.132)

or

Φ =
mmf

R′ms
− um
R′ms

. (3.133)

By comparing relations (3.131) and (3.133), we conclude that they will be

identical if

R′ms = Rms (3.134)
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Fig. 3.25

and

mmf

R′
ms

= Φs. (3.135)

From the last two equations, we find

mmf = ΦsRms. (3.136)

Now, by using formulas (3.123) and (3.127) in the last equation, we derive

mmf = Ms�0. (3.137)

In summary, the ideal permanent magnet with remanent magnetization

Ms, length �0 and normal cross-sectional area A0 can be represented in the
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Fig. 3.26

Fig. 3.27

magnetic circuit theory as a nonideal mmf (see Figure 3.26) with mmf and

Rms given by formulas (3.137) and (3.127), respectively.

As shown in Figure 3.23a, the exterior magnetic field of the permanent

magnet is spread out. However, the magnetic field lines of this exterior

field can be guided and focused in the desired air gap region by using a

ferromagnetic core of high magnetic permeability. This type of arrangement

is shown in Figure 3.27a, which represents a simple example of a magnetic

system energized by a permanent magnet.

We shall next analyze this magnetic system by assuming that the rema-

nent magnetization Ms of the ideal permanent magnet, its length �0 and

normal cross-sectional area A0 are given along with the length �c of the

two legs of the ferromagnetic core, its cross-sectional area Ac = A0 and



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 97

Magnetic Circuit Theory 97

permeability µc as well as the length δ of the air gap. It is required to find

the flux through the air gap. Analysis is performed as the sequence of the

following steps.

Step 1. We replace the magnetic system shown in Figure 3.27a by the

equivalent magnetic circuit shown in Figure 3.27b. In this magnetic circuit,

Rmc is the magnetic reluctance of the two legs of the ferromagnetic core

which are connected in series. It is clear that by using the given data we

find

mmf = Ms`0, (3.138)

Rms =
`0

µ0A0
, (3.139)

Rmc =
`c

µcA0
, (3.140)

Rmδ =
δ

µ0A0
. (3.141)

Step 2. From Figure 3.27b, we find

Φδ =
mmf

Rms +Rmc +Rmδ
. (3.142)

Step 3. In applications, µc � µ0 and it is usual that

Rmc � Rmδ and Rmc � Rms. (3.143)

Consequently,

Φδ ≈
mmf

Rms +Rmδ
. (3.144)

By substituting formulas (3.138), (3.139) and (3.141) into the last equation,

we find

Φδ ≈
Ms`0

`0
µ0A0

+ δ
µ0A0

= µ0MsA0
`0

`0 + δ
. (3.145)

Now, by recalling formula (3.123), we obtain

Φδ ≈ Φs
`0

`0 + δ
. (3.146)

It is clear from the last formula that the magnetic flux through the air gap

is always smaller than the source flux Φs. It is also clear that the optimal

design of the magnetic system is realized when

`0 � δ (3.147)
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Fig. 3.28

and

Φδ ≈ Φs. (3.148)

In this case, the magnetic reluctance of the air gap shunts the magnetic

reluctance of the permanent magnet and practically all magnetic field lines

go through the air gap. This not only increases the magnetic flux through

the air gap, but also appreciably reduces the undesired demagnetizing field.

This physical picture becomes especially transparent when the nonideal flux

source representation of the ideal permanent magnet is used in computa-

tions. Indeed, in this case the equivalent magnetic circuit for the magnetic

system shown in Figure 3.27 is presented by Figure 3.28. Under the condi-

tion (3.147), it follows from equations (3.139) and (3.141) that

Rms � Rmδ (3.149)

and this leads to formula (3.148). It is apparent from the presented discus-

sion that under the condition (3.147) the strength of the permanent magnet

is almost completely utilized.

It is interesting to point out that the nonideal magnetomotive force

representation of the ideal permanent magnet can be obtained from the

“electric current” model of such magnets. To start the discussion of this

model, we first remark that from the definition of the ideal permanent

magnet it follows that

curlM = 0. (3.150)

Since magnetic field only of the permanent magnet is being considered, we

find that

curlH = 0. (3.151)
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From equations (3.102), (3.150) and (3.151) we obtain

curl B = 0. (3.152)

In addition,

div B = 0. (3.153)

It is clear from the last two equations that the field of magnetic flux density

B of the ideal permanent magnet does not have any volume sources. Next,

we shall demonstrate that this field has only surface sources distributed

over its sides S. To this end, we shall use the continuity of tangential

components of magnetic field on S,

n×
(
H− −H+

)
= 0, (3.154)

which can also be written as
1

µ0
n×

(
B− −B+

)
= n×M, (3.155)

where n is the unit outward normal to S (see Figure 3.29a).

Thus, the tangential component of magnetic flux density is discontinu-

ous across S and this discontinuity is the source of the magnetic flux density

field. In the “electric current” model of ideal permanent magnets (see Fig-

ure 3.29b), the remanent magnetization is removed and replaced by virtual

surface currents i on S with density

i = n×M. (3.156)

Then, the tangential component of the magnetic flux density field created

by this surface current satisfies the boundary condition on S

1

µ0
n×

(
B− −B+

)
= i = n×M. (3.157)



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 100

100 Fundamentals of Electric Power Engineering

This boundary condition is identical to the boundary condition (3.155).

Furthermore, the magnetic flux density created by these surface currents

satisfies the homogeneous equations (3.152) and (3.153) in V − and V +.

Thus, the actual field B of the ideal permanent magnet and the field B

created by surface currents i satisfy the same equations and boundary con-

ditions. Consequently, these two fields of B are identical.

Now, if the region V + with surface currents i on S is considered as a

leg of the overall magnetic system, then this leg can be characterized by its

reluctance

Rms =
`0

µ0A0
(3.158)

as well as by the magnetomotive force

mmf = i`0 (3.159)

due to the surface electric currents i. It is clear according to formula (3.156)

that i = |M| = Ms and the last expression can be written in the form

mmf = Ms`0. (3.160)

Thus, we have arrived at the nonideal magnetomotive force model (Figure

3.29c) of the ideal permanent magnet.

In conclusion, there are two equivalent models of ideal permanent mag-

nets: 1) the magnetic charge model that reproduces the magnetic field H of

the ideal permanent magnet and leads to its magnetic circuit representation

as a nonideal flux source; and 2) the electric current model that reproduces

the magnetic flux density field B of the ideal permanent magnet and leads

to its magnetic circuit representation as a nonideal magnetomotive force.

3.4 Nonlinear Magnetic Circuits

In our previous discussion of the magnetic circuit theory, it has been as-

sumed that each leg of ferromagnetic core can be characterized by constant

magnetic permeability and by magnetic reluctance. This is tantamount to

the assumption of linearity of the magnetic properties of the ferromagnetic

core when each leg can be characterized by a linear magnetization curve

Bk = µkHk (see Figure 3.30). However, the actual magnetic properties of

ferromagnetic cores may appreciably deviate from this linearity assumption.

As has been mentioned in the previous section, soft magnetic materials are

used for ferromagnetic cores. These materials have very narrow hysteresis
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Fig. 3.31

loops (see Figure 3.21a). For this reason, as a reasonable approximation,

hysteresis of these materials may be neglected and soft magnetic materi-

als can be characterized by a nonlinear magnetization curve (see Figure

3.31a). It is clear that magnetic permeability µk(Hk) = Bk/Hk of such

materials is not constant (see Figure 3.31b) and exhibits monotonic de-

crease for sufficiently large magnetic field. This phenomenon of flattening

of magnetization curve and decrease in magnetic permeability is called sat-

uration.

In this section, we shall further develop the magnetic circuit theory to

account for nonlinear magnetic properties of ferromagnetic cores. It is clear

that the first two fundamental equations (3.11) and (3.22) of the magnetic

circuit theory do not depend on the assumption of linearity of magnetic

properties of ferromagnetic cores and, consequently, these equations are

valid for nonlinear magnetic circuits as well. On the other hand, the deriva-

tion of the Ohm’s Law (3.33) was based on the linearity assumption and

must be modified to be valid for nonlinear magnetic circuits. This mod-

ification can be performed as follows. Consider nonlinear magnetization
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Fig. 3.32

curve

Bk = fk(Hk) (3.161)

of leg number k. We next multiply both sides of the last equation by the

cross-sectional area Ak and, taking into account that Φk = BkAk, we obtain

Φk = Akfk(Hk). (3.162)

Then, from equation (3.24) we find

Hk =
umk

�k
. (3.163)

By substituting the last relation into formula (3.162), we arrive at

Φk = Akfk

(
umk

�k

)
. (3.164)

This means that for nonlinear magnetic circuits the linear Ohm’s Law (3.33)

must be replaced by the nonlinear Ohm’s Law

Φk = Fk(umk), (3.165)

where

Fk(umk) = Akfk

(
umk

�k

)
. (3.166)

It is apparent from the last formula that nonlinear function Fk(umk) is

obtained by the appropriate scaling of magnetization curve fk(Hk) and

this scaling is performed by using geometric parameters Ak and �k of the

leg. This scaling is illustrated by Figure 3.32 and formula (3.167),

u′
mk → H ′

k =
u′
mk

�k
→ B′

k = fk (H
′
k) → Φ′

k = AkB
′
k. (3.167)

According to this formula, for an arbitrary chosen value of u′
mk we se-

quentially compute H ′
k, B′

k and Φ′
k and determine a point of the graph
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representing the function Fk(umk). In this way, point by point, the graph

of Fk(umk) can be constructed.

Next, we shall discuss graphical analysis of nonlinear magnetic circuits

by using the nonlinear Ohm’s Law defined by formulas (3.165)-(3.166). We

shall illustrate this analysis by considering several examples.

Example 1. Consider a magnetic system shown in Figure 3.33a. It is

assumed that the number N of turns of the coil and the current I through

the coil are given along with the length �k, cross-sectional area Ak and

magnetization curves Bk = fk(Hk) of each leg of the ferromagnetic core. It

is required to find fluxes Φk, (k = 1, 2, 3).

Step 1. We replace the actual magnetic system by the equivalent nonlinear

magnetic circuit. In doing so, we replace the current-carrying coil with the

magnetomotive force

mmf = NI (3.168)

and each leg of the ferromagnetic core with nonlinear magnetic reluctance

whose Φ-um curves can be found by using formulas

Φk = Fk(umk), (k = 1, 2, 3), (3.169)

Fk(umk) = Akfk

(
umk

�k

)
. (3.170)

These nonlinear magnetic reluctances are connected in the equivalent mag-

netic circuit in the same way as the corresponding legs are connected in the

ferromagnetic core (see Figure 3.33b). It is apparent that the given data

can be used to perform the calculations in formulas (3.168)-(3.170).
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Fig. 3.34

Fig. 3.35

Step 2. Next, we perform two equivalent transformations. The first trans-

formation is to replace the two nonlinear reluctances 2 and 3 connected

in parallel by one equivalent reluctance 23 (see Figure 3.34a). The latter

means that we have to find the Φ-um graph for the reluctance 23 by us-

ing the Φ-um graphs for reluctances 2 and 3. This can be done by adding

graphs for reluctances 2 and 3 “along the Φ-axis” as illustrated in Figure

3.34b. Namely, for any chosen value of um the flux Φ23 for the equivalent

reluctance 23 is the sum of fluxes Φ2 and Φ3 corresponding to the chosen

value of um. It is obvious that this graph addition along the Φ-axis is

justified due to the parallel connection of nonlinear reluctances 2 and 3.

The second transformation is to replace the two nonlinear reluctances

1 and 23 connected in series by one equivalent reluctance 123 (see Figure

3.35a). The latter means to find the Φ-um graph for the reluctance 123 by

using the Φ-um graphs for reluctances 1 and 23. This can be accomplished

by adding graphs for reluctances 1 and 23 “along the um-axis” (see Figure

3.35b). Namely, for any chosen value of Φ the um for the equivalent reluc-
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tance 123 is equal to the sum of the um’s for reluctances 1 and 23 for the

same chosen value of Φ. This graph addition along the um-axis is justified

due to the series connection of reluctances 1 and 23.

Step 3. It is clear from Figure 3.35a that the drop of magnetic potential

across the equivalent nonlinear reluctance 123 is equal to the mmf. By

using this fact and the curve 123 in Figure 3.35b we can find the flux Φ1 as

well as the drop of magnetic potential um23 across the reluctance 23, which

is the same as the drop of magnetic potential across reluctances 2 and 3.

By using this fact and returning to Figure 3.34b, we find fluxes Φ2 and Φ3.

This completes the solution of the problem.

It is clear that the nonlinear magnetic circuit shown in Figure 3.33b is

mathematically described by nonlinear algebraic equations. The presented

analysis is the graphical solution of these nonlinear equations which exploits

the connectivity of the magnetic circuit. This graphical analysis can be

easily programmed and run on computers. It is also worthwhile to point

out that the presented technique has one important advantage. Namely,

the third step can be done simultaneously for many different values of mmf

(different values of current I) without any changes in the laborious step 2.

Example 2. Consider a magnetic system with two coils shown in Figure

3.36a. It is assumed that the numbers N1 and N2 of turns of the coils and

the current I1 through the first coil are given along with the length `k,

cross-sectional area Ak and magnetization curve Bk = fk(Hk) of each leg

of the ferromagnetic core. It is required to find the current I2 through the

second coil that guarantees the desired flux Φ3 through the third leg.

Step 1. As before, we shall replace the actual magnetic system by the

equivalent nonlinear magnetic circuit shown in Figure 3.36b. By using the

given data, we find the magnetomotive force of the first coil

mmf1 = N1I1 (3.171)

and the Φ-um graphs for the three nonlinear magnetic reluctances,

Φk = Fk(umk), (k = 1, 2, 3), (3.172)

Fk(umk) = Akfk

(
umk
`k

)
. (3.173)

Step 2. By using the Φ-um graph for the third nonlinear reluctance and

given flux Φ3, we find the drop of magnetic potential across the third re-

luctance by using the procedure illustrated in Figure 3.37.
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Fig. 3.36

Fig. 3.37

Step 3. Then, for the loop consisting of the first and third reluctances and

mmf1 we find

um1 + um3 = mmf1. (3.174)
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Fig. 3.39

Consequently,

um1 = mmf1 − um3 (3.175)

and um1 can be found.

Step 4. By using the Φ-um graph for the first nonlinear reluctance and

the value of um1 found in the third step, we find the flux Φ1 through the

first leg as illustrated in Figure 3.38.

Step 5. For node 1, we find

Φ1 +Φ2 − Φ3 = 0, (3.176)

which leads to

Φ2 = Φ3 − Φ1. (3.177)

Thus, the flux Φ2 can be found.

Step 6. By using the Φ-um curve for the second nonlinear reluctance and

the value of Φ2 found in the previous step, we find um2 (see Figure 3.39).

Step 7. Now, for the loop consisting of the second and third reluctances

and mmf2 we can write

mmf2 = um2 + um3. (3.178)
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Fig. 3.40

Since

mmf2 = N2I2, (3.179)

from the last two formulas we find

I2 =
um2 + um3

N2
, (3.180)

which completes the solution of the problem.

Example 3. Consider a magnetic system with an air gap shown in Fig-

ure 3.40a. It is assumed that the number N of turns of the coil and the

current I through the coil are given along with the air gap length δ, the

length �1, cross-sectional area A1 and the magnetization curve B1 = f1(H1)

of the ferromagnetic core. It is required to find the flux Φδ through the air

gap.

Step 1. As before, we replace the actual magnetic system by the equivalent

nonlinear magnetic circuit shown in Figure 3.40b. By using the given data,

we find

mmf = NI, (3.181)

Φ1 = F1(um1), (3.182)

F1(um1) = A1f1

(
um1

�1

)
, (3.183)

Rmδ =
δ

µ0A1
. (3.184)

Step 2. From the magnetic circuit shown in Figure 3.40b, we conclude

mmf = um1(Φ1) +RmδΦδ, (3.185)
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Fig. 3.42

where um1(Φ1) is the inverse function of Φ1 = F1(um1).

It is also clear that

Φ1 = Φδ, (3.186)

and the last equation can be written as follows:

mmf−RmδΦ1 = um1(Φ1). (3.187)

It is clear that the solution Φ1 of equation (3.187) is such that the functions

on both sides of this equation have the same value. This fact can be used

for the graphical solution of equation (3.187), which is illustrated by Figure

3.41. In this figure, the linear function representing the left-hand side of

equation (3.187) is plotted along with the Φ-um function for the nonlinear

reluctance 1. It is apparent that these two functions of Φ1 are equal to one

another for the value of Φ1 which corresponds to the point of intersection

of their plots. This completes the solution of the problem.

Example 4. Consider a magnetic system with an ideal permanent mag-

net shown in Figure 3.42a. It is assumed that remanent magnetization Ms

of the permanent magnet, its length �0 and its cross-sectional area A0 are

given. Furthermore, the air gap length δ, the total length �1 of the two
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Fig. 3.43

legs of the ferromagnetic core, its cross-sectional area A1 = A0 and the

magnetization curve B1 = f1(H1) are given as well. It is required to find

the flux Φδ through the air gap.

Step 1. We replace the actual magnetic system by the equivalent magnetic

circuit shown in Figure 3.42b. Here,

mmf = Ms�0, (3.188)

Rms =
�0

µ0A0
, (3.189)

Rmδ =
δ

µ0A0
, (3.190)

Φ1 = F1(um1), F1(um1) = A0f1

(
um1

�1

)
. (3.191)

Step 2. From the magnetic circuit shown in Figure 3.42b, we find

Φ1 = Φδ, (3.192)

mmf = RmsΦ1 + um1(Φ1) +RmδΦ1. (3.193)

The last equation can be rearranged by separating linear and nonlinear

parts,

mmf− (Rms +Rmδ)Φ1 = um1(Φ1), (3.194)

and then solved graphically by using the same reasoning as in the previ-

ous example. This graphical solution is illustrated by Figure 3.43. This

concludes the discussion of this example.

3.5 Hysteresis and Eddy Current Losses

In previous sections of this chapter, we have discussed magnetic systems

excited by coils with dc currents or by permanent magnets, and we have
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Fig. 3.44

developed the magnetic circuit theory to analyze such magnetic systems.

In power engineering-related applications, magnetic systems are often ex-

cited by ac currents. The magnetic circuit theory still can be used for the

analysis of magnetic systems with ac excitations by applying this theory at

each instant of time. Nevertheless, the ac excitations lead to new impor-

tant effects such as generation of higher-order harmonics and appearance

of energy losses due to the phenomena of hysteresis and eddy currents.

As far as the generation of higher-order harmonics is concerned, it occurs

due to nonlinear magnetic properties of ferromagnetic cores. As a conse-

quence of these nonlinear properties, sinusoidal (time-harmonic) variations

of magnetic field result in non-sinusoidal time variations of magnetic flux

density, and the other way around: sinusoidal variations of magnetic flux

density result in non-sinusoidal variations of magnetic field. This implies

that if magnetic systems are excited by sinusoidal currents then magnetic

fluxes and voltages will not be sinusoidal and will contain higher-order har-

monics in their Fourier series expansions. Similarly, if magnetic systems are

excited by sinusoidal voltages applied to their coils, then currents in these

coils will not be sinusoidal and will contain higher-order harmonics.

Next, we consider the phenomena of hysteresis and eddy current losses,

which are often called core losses. The existence of these losses appreciably

affects the actual design of magnetic systems of power equipment. We start

with hysteresis losses and shall first discuss the issue of energy stored in the

magnetic field of magnetic systems. To do this, consider a simple magnetic

system shown in Figure 3.44a. For the input voltage across the terminals

of the coil of this magnetic system we can write the equation

v(t) = Ri(t) +
dψ(t)

dt
, (3.195)
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where the last term represents the voltage induced in the coil by the time-

varying magnetic flux through the ferromagnetic core. (As before, leakage

flux is neglected.)

We shall next multiply both sides of equation (3.195) by i(t)dt:

v(t)i(t)dt = Ri2(t)dt+ i(t)dψ(t). (3.196)

It is apparent that

v(t)i(t)dt = p(t)dt = dW, (3.197)

where dW stands for an infinitesimal amount of energy supplied to the

magnetic system during the time dt. It is also clear that

Ri2(t)dt = dWR (3.198)

is the amount of energy dissipated into heat during the time dt due to the

ohmic resistance of the coil.

The last term in equation (3.196),

i(t)dψ(t) = dWf , (3.199)

can be interpreted as the change in the energy stored in the magnetic

field during the time dt. Thus, the equation (3.196) can be written as the

following energy balance relation:

dW = dWR + dWf . (3.200)

Next, we shall derive the expression for dWf in terms of magnetic field and

magnetic flux density. To this end, we shall apply Ampere’s Law to some

magnetic field line L: ∮
L

H(t) · d` = Ni(t). (3.201)

Since L is a magnetic field line and since within the framework of magnetic

circuit theory magnetic field is assumed to be uniform, the integral in the

last formula can be evaluated as follows:∮
L

H(t) · d` =

∫
L

H(t)d` = H(t)`, (3.202)

where ` is the average length of the ferromagnetic core.

From formulas (3.201) and (3.202) we derive

i(t) =
H(t)`

N
. (3.203)

On the other hand, we have

dψ(t) = NdΦ(t) = NAdB(t), (3.204)
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where A is the normal cross-sectional area of the ferromagnetic core.

By substituting formulas (3.203) and (3.204) into equation (3.199), we

derive

dWf = `AH(t)dB(t) = V H(t)dB(t), (3.205)

where V = `A is the volume of the ferromagnetic core.

By integrating the last equation, we find

Wf = V

∫ B

0

HdB. (3.206)

In the last equation Wf has the meaning of the change in the energy stored

in the magnetic field when the magnetic flux density is monotonically in-

creased from zero to B. If the stored magnetic energy is equal to zero at

B = 0, then Wf in (3.206) has the meaning of the energy stored in the

magnetic field when magnetic flux density is equal to B.

In the case of linear constitutive relation B = µH, from the last formula

we find

Wf = V
B2

2µ
. (3.207)

We shall apply the last formula to the case of magnetic systems with air

gaps (see Figure 3.44b). In this case, the total magnetic energy consists of

two distinct parts:

(1) energy Wfc stored in the magnetic field of the ferromagnetic core;

and

(2) energy Wfδ stored in the magnetic field of the air gap:

Wf = Wfc +Wfδ. (3.208)

By using formula (3.207), we find

Wfc = Vc
B2

2µc
, (3.209)

Wfδ = Vδ
B2

2µ0
. (3.210)

Here, Vc and Vδ are volumes of the core and the gap regions, respectively, µc
is the magnetic permeability of the core, and the same value B of magnetic

flux density is used in the last two formulas to reflect the continuity of

magnetic flux. It is instructive to compare Wfc and Wfδ by evaluating the

ratio
Wfc

Wfδ
=
Vc
Vδ

µ0

µc
=
`c
δ

µ0

µc
, (3.211)
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where `c is the average length of the ferromagnetic core. It is typical that

µc > 103µ0 and `c ≈ 50δ. (3.212)

Then,

Wfc

Wfδ
� 1, (3.213)

and

Wf ≈Wfδ. (3.214)

Thus, by using high permeability ferromagnetic cores, the localization of

stored magnetic energy in air gap regions can be achieved. The latter is

very important because air gaps are the regions where the energy conver-

sion occurs due to electromagnetic interactions between magnetic fields and

currents (as will be evident later in studying electrical machines).

Next, we demonstrate that formula (3.206) can be used for the evalua-

tion of hysteresis energy losses. Consider a hysteresis loop shown in Figure

3.45a and assume that the magnetic field is monotonically increased from 0

to Hm, resulting in monotonic increase in magnetic flux density (dB > 0)

from −Br to Bm. Then, according to formula (3.206), the increase in mag-

netic energy provided by the source (through the energized coil) can be

computed as follows:

W+
f = V

∫ Bm

−Br
HdB > 0. (3.215)

It is clear that the integral in the last formula is equal to the shaded area

shown in Figure 3.45a.

Next, consider the monotonic decrease of magnetic field from Hm to 0,

resulting in monotonic decrease of magnetic flux density (dB < 0) from Bm
to Br. Then, according to formula (3.206), the decrease in magnetic energy

stored in the magnetic field (and returned to the source) can be computed

as follows:

W−f = V

∫ Br

Bm

HdB < 0. (3.216)

It is clear that the absolute value of the integral in the last formula is equal

to the shaded area shown in Figure 3.45b. Thus, the amount of energy Whc
f

provided by the source to the magnetic media during one half-cycle is

Whc
f = W+

f +W−f . (3.217)
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It is clear from formulas (3.215) and (3.216) and their geometric interpre-

tation (see Figure 3.45) that the last equation can be written in the form

Whc
f =

1

2
V Aloop, (3.218)

where Aloop is the area enclosed by the hysteresis loop. In formula (3.218)

the coefficient 1
2 is used because the subtraction of shaded areas shown in

Figure 3.45 results in the shaded area shown in Figure 3.46a, which is one

half of the area enclosed by the hysteresis loop.

By using the same line of reasoning as before, we can find that during

the negative half-cycle of magnetic field variation (from 0 to −Hm and

back to 0), the amount of magnetic energy provided by the source to the

ferromagnetic media will also be given by formula (3.218) with 1
2Aloop being

the unshaded area of the hysteresis loop. Thus, the total amount of energy

W fc
f provided during the full cycle of variation of magnetic field is given



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 116

116 Fundamentals of Electric Power Engineering

Fig. 3.46

by the formula

W fc
f = V Aloop. (3.219)

Since after one full cycle of variation of magnetic field, the magnetic field

and magnetic flux density in the ferromagnetic core are the same as at

the beginning of the cycle, the energy W fc
f provided by the source can

be interpreted only as dissipated energy. This dissipated energy is fully

controlled by the shape of the hysteresis loop, namely, by the area enclosed

by the loop (see Figure 3.46b). This dissipation results in energy losses

which are usually referred to as hysteresis losses. The power Ph of these

hysteresis losses is naturally given by the formula

Ph = fW fc
f , (3.220)

because the number f of full-cycle losses occur during one second. By

combining formulas (3.219) and (3.220), we find

Ph = fV Aloop. (3.221)

It is apparent that hysteresis losses can be appreciably reduced by using

soft magnetic materials with narrow hysteresis loops (Figure 3.46c). These

soft magnetic materials are used for the construction of ferromagnetic cores

of many power devices (transformers, generators, motors, actuators, etc.).

Now, we switch to the discussion of eddy current losses in ferromagnetic

cores. These losses exist because ferromagnetic cores have finite electric con-

ductivity. For this reason, eddy currents are induced in these ferromagnetic

cores when they are subject to time-varying magnetic fields. These induced

currents result in energy losses called eddy current losses. To discuss these
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losses, consider a piece of conducting ferromagnetic material shown in Fig-

ure 3.47a. Suppose that this lamination is subject to the time-varying

magnetic flux density

B(t) = exBm cosωt. (3.222)

This magnetic flux density will induce electric field whose field lines are in
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planes perpendicular to B(t). Consider one such line Lx shown in Figure

3.47a. According to Faraday’s Law of induction, we have∮
Lx

E · d` = −dΦx(z, t)

dt
, (3.223)

where Φx(z, t) is the magnetic flux which links Lx.

By taking into account that the thickness of the ferromagnetic material

is usually quite small (∆ � h), the integral in the last formula can be

approximately evaluated as follows:∮
Lx

E · d` ≈ Ey(z, t)2h. (3.224)

For the flux Φx(z, t) we find

Φx(z, t) = 2hzBm cosωt. (3.225)

By substituting the last two formulas into equation (3.223), we derive

Ey(z, t) = ωzBm sinωt. (3.226)

The last expression can be written as

Ey(z, t) = Emy(z) sinωt, (3.227)

where

Emy(z) = ωzBm. (3.228)

Now, local power loss density can be computed as follows:

p(z, t) = σE2
y(z, t) = σω2z2B2

m sin2 ωt. (3.229)

From the last formula we easily find that the average over period T = 2π
ω

power loss density p(z) is given by the equation

p(z) =
σω2B2

m

2
z2. (3.230)

The total eddy current power loss is then evaluated as follows:

Pec =

∫ w

0

(∫ h
2

−h2

(∫ ∆
2

−∆
2

p(z)dz

)
dy

)
dx. (3.231)

By substituting formula (3.230) into the last equation and performing the

integration, we find

Pec =
1

24
σV ω2B2

m∆2, (3.232)

where V = wh∆ is the volume of the lamination.
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It is clear from the last formula that the eddy current losses can be

reduced by reducing conductivity σ. This is usually achieved by deliberately

doping steel with silicon. This doping reduces the intrinsic conductivity of

steel without appreciably affecting its high magnetic permeability. Such a

silicon-doped steel is often called transformer steel, and it is used in the

construction of ferromagnetic (steel) cores of many power devices. There is

also another efficient way to reduce eddy current losses by using laminated

structures for ferromagnetic cores. In these structures, the steel cores are

assembled from a very large number of thin steel laminations which are

electrically isolated from one another by very thin oxidation (or varnish)

layers. To illustrate this way of reducing eddy current losses, we shall

compare two designs of steel cores, a) solid core and b) laminated core (see

Figure 3.48). In the case of the solid core, we have

P (a)
ec =

1

24
σV ω2B2

m∆2, (3.233)

while in the case of the laminated core we derive

P (b)
ec =

n

24
σ

(
V

n

)
ω2B2

m

(
∆

n

)2

, (3.234)

where n is the total number of laminations. In deriving the last formula, we

simply used equation (3.232) for each lamination in the core assembly and

took into account that each such lamination has volume V
n and thickness

∆
n .

The last formula can be written as

P (b)
ec =

1

24n2
σV ω2B2

m∆2. (3.235)
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From equations (3.233) and (3.235) we find

P (b)
ec =

P
(a)
ec

n2
, (3.236)

which suggests that for a large number of thin laminations (n� 1)

P (b)
ec � P (a)

ec . (3.237)

This implies that by using the laminated design of ferromagnetic cores,

eddy current losses can be substantially reduced. For this reason, the lam-

inated design of steel cores is customarily used in many power devices. It

must be remarked that the laminated design comes with a price. This

design reduces the mechanical rigidity of the cores and results in noise pro-

duced by vibrations of the laminations in the core assembly. Furthermore,

the laminated design may not be efficient enough for very high frequency

applications which may occur in power electronics. For such applications,

ferrite cores are used. Ferrites are ceramic compounds of transition metals

with oxygen. They usually have relatively high permeability but very low

(if any) electrical conductivity.

In the presented analysis of eddy current losses, it has been assumed

that the magnetic flux density B is linearly polarized (see formula (3.222)),

i.e., its direction does not change with time. Such situation is typical for

transformers. However, in ac electrical machines, ferromagnetic cores are

subject to rotating magnetic fields. For this reason, it is of interest to

discuss how the polarization of magnetic flux density affects eddy current

losses. To this end, consider the case when a ferromagnetic lamination is

subject to circularly polarized magnetic field with magnetic flux density

given by the formula

B(t) = exBm cosωt+ eyBm sinωt. (3.238)

It is clear that the x-component of B(t) will induce electric field whose lines

are in planes perpendicular to ex and the y-component of B(t) will induce

electric fields whose lines are perpendicular to ey (see Figure 3.47b). It

is also clear that the magnetic flux due to the y-component of B(t) does

not link Lx and, the other way around, the magnetic flux due to the x-

component of B(t) does not link Ly. This means that Ex(z, t) and Ey(z, t)

can be computed independently by using the same line of reasoning that has

been used in the derivation of formulas (3.227) and (3.228). This implies

that the following expressions are valid:

Ex(z, t) = −Emx(z) cosωt, (3.239)

Ey(z, t) = Emy(z) sinωt, (3.240)
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where

Emx(z) = Emy(z) = ωzBm. (3.241)

From the last three formulas we find

p(z, t) = σ
[
E2
x(z, t) + E2

y(z, t)
]

= σω2B2
mz

2. (3.242)

It is apparent from equation (3.242) that the local power loss density is

constant in time. In other words, in the case of circular polarization of

magnetic flux density, the eddy current energy dissipation occurs at a con-

stant rate in time. This clearly suggests that rotational eddy current losses

are higher than those for unidirectional (linearly polarized) magnetic fields.

It is also clear that

p(z) = p(z, t) = σω2B2
mz

2. (3.243)

By using the last formula in equation (3.231), we derive

P cirec =
1

12
σV ω2B2

m∆2 (3.244)

and

P cirec = 2P linec , (3.245)

where P cirec is the eddy current power loss in the case of circular polarization

of B(t), while P linec is the eddy current power loss of linear polarization of

B(t) given by the formula (3.232).

The obtained result can be extended to the case of elliptical polarization

of B(t):

B(t) = exBmx cosωt+ eyBmy sinωt. (3.246)

Indeed, by using the same line of reasoning as before, it can be established

that

P elec =
1

24
σV ω2

(
B2
mx +B2

my

)
∆2, (3.247)

where P elec stands for the eddy current power loss in the case of elliptical

polarization. It is apparent that the last formula can be written in the form

P elec = P lin,xec + P lin,yec , (3.248)

where P lin,xec and P lin,yec stand for eddy current power losses associated with

two unidirectional (along x- and y-axes) components of magnetic flux den-

sity. The formulas (3.245) and (3.248) are consistent with experimental

results reported in [54] and [61].
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It is important to stress that we derived analytical expressions for eddy

current losses without invoking any assumptions concerning the magnetic

properties of the laminations. The main limitation of our derivations is the

tacit assumption that the magnetic flux density is uniform over a lamination

cross section. This assumption ignores the magnetic field created by eddy

currents that may result in nonuniform distribution of magnetic flux den-

sity. This nonuniform distribution may lead to the increase in eddy current

losses, which are usually called excess eddy current losses. The discussion

of these excess losses is beyond the scope of this book. For this reason, we

shall just mention that this discussion can be found in [36], [37], [38], [49],

where it is demonstrated that nonlinear diffusion (penetration) of electro-

magnetic fields occurs as an inward progress of almost rectangular fronts

of magnetic flux density. As a consequence of this almost rectangular front

motion, the magnetic flux density is not uniform even for relatively low

frequencies, and this results in the increase of eddy current losses. Another

explanation of excess eddy current losses based on the existence of domain

structures within magnetic conductors was developed by G. Bertotti and it

can be found in references [7], [8], [9].



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 123

Problems

(1) Give a concise summary of the basic equations of electric circuit

theory (terminal relations, continuity conditions, KCL and KVL

equations).

(2) Explain how to write linearly independent KCL and KVL equa-

tions.

(3) Give a concise summary of the definition of “phasor” and basic

phasor relations in ac circuits.

(4) Derive formula (1.91).

(5) Consider an RC circuit shown below. The measured peak values

of voltages across the resistor and capacitor are 30 V and 40 V,

respectively. What is the peak value of the input voltage? Solve

this problem by visualizing the appropriate phasor diagram.

Fig. P.1

(6) Construct the phasor diagram for the electric circuit shown in

Figure P.2.

(7) Construct the phasor diagram for the electric circuit shown in

Figure P.3.

(8) Construct the phasor diagram for the electric circuit shown in Fig-

ure P.4.

(9) Consider an RLC circuit shown in Figure P.5 where inductive re-

123
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Fig. P.2

Fig. P.3

Fig. P.4

actance exceeds capacitive reactance. The measured peak values

of input voltage and voltages across the resistor and capacitor are

equal to 50 V, 30 V and 40 V, respectively. By using the appropri-

ate phasor diagram, find the peak value of the voltage across the

inductance.

Fig. P.5
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(10) Prove the orthogonality conditions (2.4)-(2.9) for trigonometric

functions.

(11) By using the orthogonality conditions, derive formulas (2.10)-(2.12)

for Fourier coefficients.

(12) By assuming that function f(t) is differentiable, prove formulas

(2.16) by integration by parts.

(13) Prove that the product of two even or two odd functions is an even

function, while the product of an even and an odd function is an

odd function.

(14) By using the frequency-domain technique, find i(t) in the electric

circuit below when vs(t) is defined by Figure 2.11.

Fig. P.6

(15) By using the frequency-domain technique, find i(t) in the electric

circuit shown in Figure 2.16 when vs(t) is defined by Figure 2.19.

(16) By using the frequency-domain technique, find i(t) in the electric

circuit shown in Figure 2.14 when vs(t) is defined by Figure 2.19.

(17) By using the time-domain technique, find i(t) in the electric circuit

shown in Figure P.6 when vs(t) is defined by Figure 2.17.

(18) By using the time-domain technique, find i(t) in the electric circuit

shown in Figure 2.16 when vs(t) is defined by Figure 2.19.

(19) By using the time-domain technique, find i(t) in the electric circuit

shown in Figure P.6 when vs(t) is defined by Figure 2.19.

(20) By using the time-domain technique, find i(t) in the electric circuit

shown in Figure 2.18 when vs(t) is defined by Figure 2.17.

(21) Give a concise summary of the basic equations of magnetic circuit

theory, including the main assumptions on which this theory is

based.

(22) Consider the magnetic system shown in Figure P.7. The currents

I1 and I2 as well as the number of turns N1 and N2 are given along

with the geometry and magnetic permeabilities of each leg, `k, Ak,

µk, (k = 1, 2, 3), and the length δ of the air gap. By using the
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superposition principle, derive the expression for the magnetic flux

through the air gap.

Fig. P.7

(23) State the definition of inductance. How does it depend on the num-

ber of turns and magnetic permeability? Explain how inductance

can be computed by using magnetic circuit theory. What is a leak-

age inductance? Can it be computed by using the magnetic circuit

theory?

(24) Derive the expression for the main inductance of the coil in the

magnetic system shown below by assuming that the number of

turns N , the geometry and magnetic permeabilities of each leg `k,

Ak, µk, (k = 1, 2, 3) and the lengths δ2 and δ3 of the air gaps are

given.

Fig. P.8

(25) State the definition of mutual inductance of two coils. Is mutual

inductance always smaller than each self-inductance? Explain how

the magnetic circuit theory can be used for the calculation of mu-

tual inductances.

(26) Derive the expression for M21 for the two coils in the magnetic

system shown in Figure 3.19 and demonstrate that M21=M12.
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(27) How does the mutual inductance depend on the number of turns of

the two coils and magnetic permeability of the ferromagnetic core?

What are the main functions of ferromagnetic cores?

(28) Derive the expression for the mutual inductance between the two

coils in the magnetic system shown in Figure P.7.

(29) What is a permanent magnet and what are the main figures of merit

of permanent magnets? What is a demagnetizing field? What

materials are used for permanent magnets?

(30) Describe concisely the two equivalent magnetic circuit models for

ideal permanent magnets and provide the relevant formulas.

(31) Find the magnetic fluxes through the air gaps in the magnetic

system shown in Figure P.9. Identify the quantity that must be

given in order to solve this problem.

Fig. P.9

(32) How are the main equations of magnetic circuit theory modified in

the case of nonlinear magnetic circuits?

(33) Explain the method of graphical analysis of nonlinear magnetic

circuits and how it can be computerized.

(34) What is hysteresis of ferromagnetic materials? Give the formula

for hysteresis power losses.

(35) What are eddy currents? Give the formula for eddy current losses

and state the main assumptions for the validity of this formula.

(36) Explain how eddy current losses can be reduced. How does the

polarization of magnetic field affect eddy current losses?

(37) Core losses are the sum of hysteresis and eddy current losses. If core

losses are measured for two different frequencies, how can hysteresis

and eddy current losses be separated?

(38) Suppose you measure core power losses for a particular magnetic

circuit at two source excitation frequencies. For f = 60 Hz you
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measure losses of 100 W and for f = 75 Hz you measure losses of

150 W, with the peak value of excitation voltage being the same

in both cases. Assuming the losses are described by the classical

equations for eddy current and hysteresis losses, what fractions of

the total loss power are the eddy current losses and the hysteresis

losses for the two cases given?

(39) For the device described in problem 38, what would the total core

losses be at f = 100 Hz if the peak value of excitation voltage

remains the same?

(40) Demonstrate the validity of the formulas (3.247) and (3.248) for

eddy current losses in the case of elliptical polarization of magnetic

flux density.
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Chapter 1

Introduction to Power Systems

1.1 Brief Overview of Power System Structure

In power systems various forms of energy are converted into electric energy.

This process of conversion is called electric power generation. There are

the following forms of energy that may be involved in the electric power

generation process:

a) chemical energy,

b) heat energy,

c) mechanical energy,

d) nuclear energy,

e) solar energy and

f) electric energy.

The questions can be asked, “What is so special about electric energy that

other forms of energy are converted into it?” and “Why is electric energy

the backbone of modern civilization?” The reason is that electric energy

(power) has the following unique features:

(1) It can be centrally generated in huge amounts at power plants.

(2) It can be transmitted over large distances with relatively small

losses by using high-voltage transmission lines.

(3) It is quite versatile and can be converted into almost any desired

form of energy.

(4) It is ideally suited for encoding, transmission and processing of

digital (or analog) information.

(5) It has minimally intrusive nature, being present in households, of-

fices and industrial areas without occupying much space and with-

out much noise or other undesirable effects.

131



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 132

132 Fundamentals of Electric Power Engineering

Fig. 1.1

Electric power systems are designed and constructed to utilize these unique

features of electric energy. A schematic depiction of the simplest (so-called

radial) model of electric power system is shown in Figure 1.1. It is apparent

from this figure that electric power is generated in a power plant, where

several stages of energy conversion may occur. Usually, the last stage is

the conversion of mechanical energy into electric energy. This conversion is

accomplished by using a synchronous generator and electric power is gener-

ated as a three-phase ac power. This power is transmitted and distributed

by means of four (or three) wires. The output voltage of synchronous gener-

ators is typically between 12 kV and 30 kV. To transmit the electric power

over large distances, this voltage is usually stepped up by using a trans-

former. Then, electric power is transmitted over large distances by using

high-voltage transmission lines. The voltage of such lines may vary from

one line to another and it is typically between 65 kV and 800 kV. For trans-

mitted electric power to be consumed, its voltage must be stepped down.

This is accomplished by using step-down transformers and then electric

power is distributed to customers. Power distribution occurs at different

voltage levels with the highest level being between 4 kV and 35 kV. Usu-

ally, there are several stages of voltage step down which are performed by

transformers at power substations or by pole-mounted transformers and,

finally, electric power is delivered to customers. In the US, this power is

delivered to residential customers at the voltage of 120 V.

It is clear from the presented discussion that electric power systems

have three major components: generation, transmission and distribution.

These components are briefly discussed below. Before proceeding with this

discussion, it is worthwhile to stress three important principles that have

historically been adopted in the development of electric power systems.

(1) Electric power systems must be designed and operated to provide
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electric power to customers at more or less constant peak (or rms)

value of voltage and constant frequency despite continuously and

unpredictably changing loads.

(2) Electric power systems are designed and operated to generate elec-

tric power on demand.

(3) Generation of electric power is accomplished by using high energy

density conversion devices. The latter means that it is desirable to

construct generators with maximum output power per unit weight.

Historically, these three principles have been instrumental in the design and

operation of efficient, reliable and environmentally friendly power systems.

During the past three decades, some revision of these basic principles has

been under way.

Next, we briefly review the generation of electric energy which occurs in

power plants. There are different types of power plants depending on the

original source of energy. In a fossil fuel power plant the original source of

energy is the chemical energy of fossil fuel (coal, natural gas or oil). There

are three stages of energy conversion. The first stage of energy conversion

is combustion in a furnace and the chemical energy is eventually converted

into the thermal energy of steam. In the second stage, the steam drives

a turbine and in this way thermal energy is converted into mechanical

energy. Finally, the steam (or gas) turbine is mechanically coupled to the

rotor of a synchronous generator and, in this stage, mechanical energy is

converted into electric energy. According to data provided by the Energy

Information Administration of the US Department of Energy, in the US in

2012 about 68% of electric power was generated by fossil fuel plants. Here,

the previously dominant role of coal is being gradually reduced and replaced

by gas. In 2012, about 37% of electric power was generated by coal-fired

power plants, about 30% of electric power was generated by gas-fired power

plants and only about 1% was generated by oil-fired power plants. Gas

generation results in less pollution by carbon dioxide and, for this reason,

it is more environmentally friendly. Gas generation is currently driven by

the availability of relatively cheap natural gas that has been achieved due to

the dramatic progress in the technology of horizontal drilling and hydraulic

fracturing (commonly known as fracking).

In nuclear power plants, the primary source of energy is nuclear. The

physical origin of nuclear energy is the strong interaction that holds (binds)

neutrons and protons together in the nucleus of an atom. In nuclear reac-

tors, a controlled nuclear fission (splitting of nucleus) process occurs which

results in conversion of nuclear energy into heat and eventual production of
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steam. The second stage is the conversion of thermal energy of steam into

mechanical energy by using steam turbines. Finally, mechanical energy is

converted into electric energy by using synchronous generators. In 2012,

about 19% of electric power in the US was generated by using nuclear power

plants.

In hydro-power plants the mechanical (gravitational) energy of falling

water is converted into electric energy. These power plants require the

construction of dams to divert and store water, as well as to control its

flow, the use of water turbines (water wheels) and salient pole synchronous

generators. In 2012, about 7% of electric power in the US was generated

by hydro-power plants. This percentage will drop with time because most

of the available sources of hydro-power have already been developed.

Recently, a strong emphasis has been placed on using renewable energy

in electric power generation. This emphasis has led to the increase in elec-

tric power production by using wind and solar energies as primary energy

sources. Recent statistics suggest that about 5% of electric power in the

US has been generated by using these two renewable sources. In the case

of wind generation, airflows produced by winds drive wind turbines which

are mechanically coupled with synchronous (or induction) generators that

convert mechanical energy into electricity. In the case of solar generation,

photovoltaic semiconductor devices are used to convert solar radiation into

dc electricity. The physical mechanism of this conversion is the generation

by light of electrons and holes in depletion regions of p-n junctions which are

subsequently driven in opposite directions by electric fields in these deple-

tion regions. The main advantage of wind and solar generation is that these

means of electric power generation are clean, i.e., without any direct detri-

mental effects to the environment. However, solar and wind power plants

do not generate electric power on demand but instead intermittently. Fur-

thermore, solar and wind electric power generation is accomplished by using

low energy density conversion devices. This makes renewable electric power

generation less cost effective than traditional (fossil fuel or nuclear) power

generation. This also raises legitimate questions concerning the overall en-

vironmental benefits of renewable sources if these benefits are measured

over the entire life cycle, i.e., “from dust to dust.” Finally, there are also

issues of integration of renewables into existing three-phase power systems.

As has been mentioned before, electric power is generated as three-

phase ac power of constant frequency. The constant frequency is achieved

by maintaining constant speed of rotation of rotors of synchronous genera-

tors. In the US this frequency is 60 Hz, in Europe and some parts of Asia
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this frequency is 50 Hz, while in aviation ac power of 400 Hz is used. At

higher frequencies, lighter and more compact power devices (generators,

motors and transformers) can be used. However, higher frequencies result

in higher energy losses (heat dissipation) and require more efficient cooling

techniques.

Next, we shall discuss transmission and distribution components of elec-

tric power systems. In many respects, these components are similar. The

main difference is that electric power transmission occurs at appreciably

higher voltages than distribution. In general, the longer the transmission

distance, the higher the voltage level. Furthermore, transmission lines are

usually run from substation to substation and provide bulk power trans-

mission, while numerous distribution lines run through populated areas to

reach individual customers and deliver only some small fraction of bulk

transmitted power.

There are two types of transmission and distribution lines: overhead

lines and underground lines. Overhead lines are constructed by using sup-

port structures consisting of steel towers and/or wooden poles with vertical

strings of suspension insulators to which multi-strand conducting wires of

power lines are attached. Aluminum alloys are most frequently used for

conducting wires, while the use of copper is rare. Copper has better con-

ductivity, but aluminum is lighter and cheaper. Underground transmission

and distribution lines are insulated high-voltage cables. They are predom-

inantly used in highly populated metropolitan areas. Their construction

is more expensive than the construction of overhead transmission and dis-

tribution lines, but they are much less affected by inclement weather, take

less of valuable real estate (land) and have much lower visibility.

The question can be asked why high voltages are used for transmission

and distribution. The first reason is that the use of high voltages reduces

transmission and distribution losses. Indeed, the following formulas can be

used for transmitted (ptr(t)) and loss (ploss(t)) powers:

ptr(t) = v(t)i(t), (1.1)

ploss(t) = ri2(t), (1.2)

where r is the per unit length resistance of transmission (or distribution)

line wire.

It is apparent from the last two formulas that if the same power is

transmitted at higher voltage and lower current this will result in smaller

per unit length losses. Currently, transmission and distribution losses vary

mostly within 5% to 15% of transmitted power.
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Fig. 1.2

Fig. 1.3

The second reason to use high voltage transmission is to increase the

transmission capacity of the transmission line. Below, we shall illustrate

this by considering a very simplified model of dc transmission line shown

in Figure 1.2, where R stands for the overall resistance of connecting wires

and R� is the resistance of the load to which dc power P� is delivered at

voltage V�. From Figure 1.2, we find that

P� = V�I (1.3)

and

I =
V0 − V�

R
, (1.4)

which results in

P� =
1

R

(
V�V0 − V 2

�

)
=

V 2
0

4R
− 1

R

(
V� −

V0

2

)2

. (1.5)

The last equation is graphically illustrated by Figure 1.3. It is clear from

formula (1.5) that the maximum transmitted power (i.e., transmission ca-

pacity) is given by the formula

P�,max =
V 2
0

4R
. (1.6)
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No power above P`,max can be transmitted. The last formula implies that

the higher the voltage of a dc transmission line, the higher its transmis-

sion capacity. The last formula also implies that the smaller the resistance

of the dc line conductors, the higher the transmission capacity. The lat-

ter fact suggests that the use of superconducting wires may dramatically

increase the transmission capacity. This capacity will be limited by the

value of critical current of a superconductor, i.e., by the current at which

superconductivity is destroyed. This discussion clearly suggests that the

progress in high-temperature superconductor physics and technology may

have a dramatic effect on future structures of power systems.

Next, it is appropriate to discuss briefly the nature of loads in power

systems. These loads can be subdivided into three distinct groups: res-

idential, commercial and industrial. These loads vary depending on the

time of day, the season of the year and from year to year. Load studies are

very important and indispensable in planning the future development of a

particular power system to meet future power demands. The most difficult

component of load studies is the long-term prediction of future power de-

mands associated with industrial loads. These future demands are affected

by the state of the economy and manufacturing globalization.

The model of a power system shown in Figure 1.1 is quite simplistic

in nature and illustrates the transmission of electric power from a sin-

gle power plant in one direction toward closely localized loads. In reality,

transmission lines are strongly interconnected among various power plants

and utilities. These interconnected power plants and utilities form electric

power grids which exist in the US on a continental scale. There are the

following advantages of power grids: 1) mutual assistance in times of emer-

gency; 2) possibilities for long-term power trade among various utilities; 3)

possibilities for short-term power trades between neighboring utilities; and

4) facilitation of the creation of a global electric power market within the

framework of deregulated utilities.

Finally, it is appropriate to discuss briefly the structure of utility com-

panies which operate power systems and the concept of deregulation of

the utility industry. Historically, utility companies were created and oper-

ated as regulated and vertically integrated monopolies. They were natural

monopolies because it was recognized and accepted that it would be detri-

mental to the environment to have several competing utilities in the same

area with different (and redundant) transmission and distribution lines.

These monopolies were vertically integrated because they owned and were

responsible for the operation of all three components of the power systems
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(generation, transmission and distribution) as well as for serving all of their

customers in the area of their monopoly. These monopolies were regulated

because special regulatory committees controlled how much these vertically

integrated monopolies could charge their customers for the delivered elec-

tric power. This structure of electric power utilities was quite successful for

many years. However, during the past two decades the new idea has been

advanced that the generated electric energy as a product is fundamentally

distinct from transmission and distribution as a service. On this basis,

it was suggested and partially implemented that electric power generation

should be open to competition rather than being the monopoly of local util-

ities. This resulted in formation of global energy markets where customers

have opportunities to purchase electric power from different providers. It

has been argued that the competition on the generation side of the util-

ity business will eventually result in the reduction of electric energy cost.

This cost reduction has not yet materialized. Deregulation raises many

fundamental questions concerning the operation of interconnected power

systems. However, the analysis of these issues is well beyond the scope of

this brief review.

1.2 Three-Phase Circuits and Their Analysis

It is discussed in the previous section that ac electric power is generated,

transmitted and distributed as three-phase power. In this section, we dis-

cuss the basic facts related to three-phase circuits and their analysis.

In three-phase circuits, there are three voltage sources va(t), vb(t) and

vc(t) which have the same peak value, the same frequency and are phase-

shifted with respect to one another by 2π/3:

va(t) = Vm cosωt, (1.7)

vb(t) = Vm cos

(
ωt− 2π

3

)
, (1.8)

vc(t) = Vm cos

(
ωt− 4π

3

)
. (1.9)

These voltage sources are usually connected into “star” (Y) or “delta” (∆).

We shall first discuss the star connection of voltage sources and star con-

nection of load. This configuration of three-phase circuits is illustrated by

Figure 1.4. It is clear from this figure that there are four wires that con-

nect the star of voltage sources with the star of loads. They are lines a, b
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Fig. 1.4

and c as well as the neutral. Impedances Za, Zb and Zc represent different

phase loads that are connected between the neutral and lines a, b and c,

respectively. V̂a, V̂b and V̂c are the phasors of voltages va(t), vb(t) and vc(t),

respectively. It follows from formulas (1.7)-(1.9) that these phasors can be

written as follows:

V̂a = Vm, V̂b = Vme−j 2π
3 , V̂c = Vme−j 4π

3 . (1.10)

It is customary in the theory of three-phase systems to use the notation

α = e−j 2π
3 . (1.11)

It is obvious that

α2 = e−j 4π
3 , α3 = 1, α4 = α. (1.12)

From formulas (1.10)-(1.12) we find

V̂a = Vm, V̂b = αV̂a, V̂c = α2V̂a. (1.13)

It is clear from the presented discussion that multiplication of a phasor by

α is equivalent to the phase shift in time by 2π/3 for the corresponding

sinusoidal quantity.

It can be easily proved that

1 + α+ α2 = 0. (1.14)

Indeed, by treating the left-hand side of formula (1.14) as a geometric series,

we find that

1 + α+ α2 =
1− α3

1− α
= 0, (1.15)
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because α3 = 1 (see (1.12)).

From formulas (1.13) and (1.14), we derive

V̂a + V̂b + V̂c = 0. (1.16)

The last equation implies that

va(t) + vb(t) + vc(t) = 0. (1.17)

The last formula expresses a simple mathematical fact that the sum of three

sinusoidal quantities of the same peak value, the same frequency and phase-

shifted with respect to one another by 2π/3 is equal to zero at any instant

of time. This mathematical fact will be frequently used in our subsequent

discussions.

It is customary in the case of three-phase circuits to speak about phase

and line voltages. Phase voltages are measured between the neutral and

one of the lines a, b and c. It is clear that V̂a, V̂b and V̂c are the phasors of

the phase voltages and their peak values are the same:∣∣∣V̂a∣∣∣ =
∣∣∣V̂b∣∣∣ =

∣∣∣V̂c∣∣∣ = Vm = Vph, (1.18)

where Vph is the notation for the common peak value of the phase voltages.

Line voltages are measured between different pairs of lines. This means

that there are three line voltages

V̂ab = V̂a − V̂b, (1.19)

V̂bc = V̂b − V̂c, (1.20)

V̂ca = V̂c − V̂a. (1.21)

It is clear from Figure 1.4 and the last three formulas that V̂ab represents the

phasor of the line voltage measured between lines a and b, V̂bc is the phasor

of the line voltage measured between lines b and c, while V̂ca means the

phasor of the line voltage between lines c and a. On the basis of symmetry,

it is clear that the peak values of line voltages are the same:∣∣∣V̂ab∣∣∣ =
∣∣∣V̂bc∣∣∣ =

∣∣∣V̂ca∣∣∣ = V`, (1.22)

where V` is the common peak value of the line voltages. The last equality

can be made geometrically transparent by constructing the phasor diagram

shown in Figure 1.5a. In this diagram, the lengths of phasors V̂a, V̂b and V̂c
and geometric angles between them are consistent with formulas (1.7), (1.8)

and (1.9), while the diagram representations of phasors V̂ab, V̂bc and V̂ca
are consistent with formulas (1.19)-(1.21). It is clear from Figure 1.5a that
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isosceles triangles aO′b, bO′c and cO′a are identical and can be obtained

from one another through rotation by 2π/3. This implies the validity of

formula (1.22). By using Figure 1.5b, it is easy to find the relation between

the peak values of line and phase voltages. Indeed, from this figure follows

that

V� =
∣∣∣V̂ab

∣∣∣ = 2
∣∣∣V̂a

∣∣∣ cos
(π
6

)
= 2Vph

√
3

2
, (1.23)

which leads to

V� =
√
3Vph. (1.24)

In the US, the typical rms (root mean square) values of phase and line

voltages are 120V and 208V, 208V and 360V, 360V and 620V, etc.

Furthermore, it is clear from Figure 1.5a that the line voltages are phase-

shifted from one another by 2π/3. Consequently,

V̂bc = αV̂ab, V̂ca = α2V̂ab. (1.25)

From the last formula and equation (1.14) follows that

V̂ab + V̂bc + V̂ca = 0. (1.26)

The last formula implies that at any instant of time

vab(t) + vbc(t) + vca(t) = 0. (1.27)

It is interesting to find explicit expressions for vab(t), vbc(t) and vca(t). It

is clear from Figure 1.5b that

vab(t) =
√
3Vm cos

(
ωt+

π

6

)
. (1.28)
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Fig. 1.6

Taking into account that line voltages are phase-shifted by 2π/3, we find

vbc(t) =
√
3Vm cos

(
ωt+

π

6
− 2π

3

)
, (1.29)

vca(t) =
√
3Vm cos

(
ωt+

π

6
− 4π

3

)
. (1.30)

Now, it is easy to write expressions for the phasors of the line voltages:

V̂ab =
√
3Vmej

π
6 , V̂bc =

√
3Vme−j π

2 , V̂ca =
√
3Vme−j 7π

6 . (1.31)

The question can be asked what function the neutral plays in the three-

phase circuit shown in Figure 1.4. It is clear from this figure that as a

result of the presence of the neutral the same peak (or rms) value of voltage

can be maintained across the loads represented by impedances Za, Zb and

Zc despite their possible variations in time due to changing loads. This

conclusion is achieved by ignoring in the three-phase circuit shown in Figure

1.4 the impedances of connecting lines a, b and c and the neutral. To

analyze the effect of these impedances on the ability to maintain more or

less constant peak value of voltages across the loads, we shall analyze the

electric circuit shown in Figure 1.6. The intrinsic simplicity of the circuit

shown in this figure is revealed by the observation that there are only two

nodes (O′ and O) in this circuit. To take advantage of this simplicity, we

choose node O′ as a reference node with zero potential,

V̂O′ = 0. (1.32)
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Then, the analysis of the circuit can be performed by using the following

two steps.

Step 1. It is apparent from Figure 1.6 and equation (1.32) that

Îa =
V̂a − V̂O
Za + Z ′a

, Îb =
V̂b − V̂O
Zb + Z ′b

, Îc =
V̂c − V̂O
Zc + Z ′c

, În = − V̂O
Zn

. (1.33)

Next, we introduce admittances

Ya =
1

Za + Z ′a
, Yb =

1

Zb + Z ′b
, Yc =

1

Zc + Z ′c
, Yn =

1

Zn
(1.34)

and rewrite the equations in (1.33) as follows:

Îa = Ya

(
V̂a − V̂O

)
, Îb = Yb

(
V̂b − V̂O

)
, Îc = Yc

(
V̂c − V̂O

)
,

În = −YnV̂O. (1.35)

It is apparent that if V̂O is found then all currents can be found by using

the last formulas in (1.35) or the formulas in (1.33).

Step 2. From the Kirchhoff Current Law for node O, we find

Îa + Îb + Îc + În = 0. (1.36)

By substituting the expressions from (1.35) into the last equation, we find

Ya

(
V̂a − V̂O

)
+ Yb

(
V̂b − V̂O

)
+ Yc

(
V̂c − V̂O

)
− YnV̂O = 0, (1.37)

which can be further transformed as

YaV̂a + YbV̂b + YcV̂c = (Ya + Yb + Yc + Yn)V̂O (1.38)

and leads to

V̂O =
YaV̂a + YbV̂b + YcV̂c
Ya + Yb + Yc + Yn

. (1.39)

This completes the analysis of the electric circuit shown in Figure 1.6.

Indeed, by computing V̂O from formula (1.39) and then using the computed

value of V̂O in formulas from (1.33), we can find all the currents.

Formula (1.39) is of special interest because the deviations of V̂O from

zero reflect deviations of voltages across the phase loads. Indeed, if |Zn| is

very small and, consequently, |Yn| is very large, then according to (1.39)

V̂O ≈ 0. (1.40)

Furthermore, if line impedances Z ′a, Z ′b and Z ′c are small in comparison

with load impedances Za, Zb and Zc, then the peak values of the voltages

across the load impedances can be maintained approximately the same.
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Next, we consider the important case of balanced load when

Za + Z ′a = Zb + Z ′b = Zc + Z ′c. (1.41)

Then, according to (1.34), we have

Ya = Yb = Yc = Y. (1.42)

By using the last formula as well as formula (1.16) in equation (1.39), we

derive

V̂O =
Y
(
V̂a + V̂b + V̂c

)
3Y + Yn

= 0. (1.43)

From (1.33) and (1.43), we conclude that

Îa =
V̂a

Za + Z ′a
, Îb =

V̂b
Zb + Z ′b

, Îc =
V̂c

Zc + Z ′c
, În = 0. (1.44)

Now, taking into account formulas (1.13) and (1.41), we find

Îb = αÎa, Îc = α2Îa. (1.45)

Thus, in the case of balanced load, the current through the neutral is equal

to zero, while Îa, Îb and Îc have the same peak values and are phase-

shifted with respect to one another by 2π/3. This is a very important fact

because, as discussed in Chapter 4, such currents through stationary (but

distributed) windings may create uniformly rotating magnetic fields. Such

fields are at the very foundation of the principles of operation of ac electric

machines (i.e., generators and motors). The ability to create uniformly

rotating magnetic fields was historically one of the main reasons why three-

phase circuits (and three-phase power systems) were introduced. It is also

discussed in Chapter 4 that unbalanced loads are very detrimental to the

operation of synchronous generators because they may result in induction of

appreciable eddy currents in the solid rotors of these generators, leading to

their heating. Thus, the balanced load is the preferable mode of operation

of power systems, and utility companies usually take special measures to

achieve it.

In the case of balanced load, the analysis of three-phase circuits can

be substantially simplified by using the concept of “per-phase analysis.”

Indeed, consider instead of the three-phase circuit shown in Figure 1.6 a

very simple single-phase circuit shown in Figure 1.7. According to this

figure, we have

Îa =
V̂a

Za + Z ′a
, (1.46)
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Fig. 1.7

Fig. 1.8

which is identical to the first formula in (1.44). As soon as Îa is found,

formulas in (1.45) can be used to find Îb and Îc. Thus, in the case of

balanced load, per-phase analysis leads to the same result as the analysis

of the three-phase circuit shown in Figure 1.6.

We conclude this section by considering the analysis of a more compli-

cated three-phase circuit with a delta connection of loads shown in Figure

1.8. In this circuit, three-phase voltages as well as all impedances are given,

and the purpose of analysis is to find all marked currents. It is interesting

to note that in the case when line impedances Z ′
a, Z

′
b and Z ′

c are very small

and negligible, then load impedances Zab, Zbc and Zca are subject to line

voltages and all currents can be easily found. Furthermore, in this case

peak (or rms) values of load voltages are maintained the same regardless of

variations of load impedances. The analysis of the circuit shown in Figure
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Fig. 1.9

1.8 may be of interest in order to understand how line impedances Z′
a, Z

′
b

and Z ′
c may affect the variation of load voltages. This analysis can be ac-

complished by using the following three steps.

Step 1. is to replace the delta connection by the equivalent star connection

(see Figure 1.9). This means that we have to find Za, Zb and Zc in terms of

Zab, Zbc and Zca. It can be proved (the proof is based on a superposition

argument and it is omitted here) that “star” and “delta” connections are

equivalent if impedances between any two identical nodes of these connec-

tions are the same. By computing impedances between nodes a and b, b

and c, and c and a for star and delta connections and equating them, we

arrive at the following linear simultaneous equations with respect to Za, Zb

and Zc:

Za + Zb =
Zab(Zbc + Zca)

Zab + Zbc + Zca
, (1.47)

Zb + Zc =
Zbc(Zab + Zca)

Zab + Zbc + Zca
, (1.48)

Zc + Za =
Zca(Zab + Zbc)

Zab + Zbc + Zca
. (1.49)

It is easy to check that the solution of these equations is given by the

formulas

Za =
ZabZca

Zab + Zbc + Zca
, (1.50)

Zb =
ZbcZab

Zab + Zbc + Zca
, (1.51)

Zc =
ZcaZbc

Zab + Zbc + Zca
. (1.52)

Step 2. is to analyze the three-phase circuit shown in Figure 1.10, which is

obtained as a result of equivalent transformation of delta into star. Since
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Fig. 1.10

this circuit is equivalent to the circuit shown in Figure 1.8, currents Îa, Îb
and Îc are the same in both circuits. These currents can be found in the

same way as for the circuit shown in Figure 1.6 with only one simplification

that for the circuit in Figure 1.10 Zn = ∞ and, consequently, Yn = 0. The

currents Îa, Îb and Îc can be computed by using sequentially the following

formulas:

Ya =
1

Za + Z ′
a

, Yb =
1

Zb + Z′
b

, Yc =
1

Zc + Z ′
c

, (1.53)

V̂O =
YaV̂a + YbV̂b + YcV̂c

Ya + Yb + Yc
, (1.54)

Îa = Ya

(
V̂a − V̂O

)
, Îb = Yb

(
V̂b − V̂O

)
, Îc = Yc

(
V̂c − V̂O

)
. (1.55)

Step 3. Now, by taking into account that the voltages between a and b, b

and c, and c and a for the circuits shown in Figures 1.8 and 1.10 are the

same, we derive

Îab =
V̂ab

Zab
=

ÎaZa − ÎbZb

Zab
, (1.56)

Îbc =
V̂bc

Zbc
=

ÎbZb − ÎcZc

Zbc
, (1.57)

Îca =
V̂ca

Zca
=

ÎcZc − ÎaZa

Zca
. (1.58)

This completes the analysis of the three-phase circuit in Figure 1.8.
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Fig. 1.11

1.3 AC Power and Power Factor

In this section, we shall discuss issues related to ac power. First, we consider

the case of single-phase load shown in Figure 1.11. We assume that input

voltage and current are sinusoidal,

v(t) = Vm cos(ωt+ ϕV ), (1.59)

i(t) = Im cos(ωt+ ϕI). (1.60)

Then, for instantaneous power p(t) delivered to the load, we have

p(t) = VmIm cos(ωt+ ϕV ) cos(ωt+ ϕI). (1.61)

By using a simple trigonometric identity, the last formula can be trans-

formed as

p(t) =
VmIm

2
[cos(ϕV − ϕI) + cos(2ωt+ ϕV + ϕI)]. (1.62)

By taking into account that

ϕV − ϕI = ϕ, (1.63)

we find

p(t) =
VmIm

2
cosϕ+

VmIm
2

cos(2ωt+ ϕV + ϕI). (1.64)

Thus, the instantaneous power has two distinct components: one that does

not change with time and another that oscillates with double frequency.

Power consumption is usually characterized by average power P defined as

P =
1

T

∫ T

0

p(t)dt, (1.65)

where T = 2π
ω is the period of the ac voltage and current.

From formulas (1.64) and (1.65) we derive

P =
VmIm

2
cosϕ. (1.66)
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Indeed, the integration of the second term in the right-hand side of formula

(1.64) yields zero because the integration is performed over two periods of

the cosine function, while the integration of the first term in the right-hand

side leads to equation (1.66).

The last formula is often written in terms of rms values of voltage and

current,

P = V I cosϕ, (1.67)

where V = Vm/
√

2 and I = Im/
√

2.

We shall next introduce the notion of complex power, which allows to

compute P by using phasors of voltage V̂ and current Î. The complex

power Ŝ is defined as

Ŝ =
1

2
V̂ Î∗, (1.68)

where Î∗ stands for the complex conjugate of Î.

The last formula admits the following transformation:

Ŝ =
1

2
Vme

jϕV Ime
−jϕI =

VmIm
2

ej(ϕV −ϕI) =
VmIm

2
ejϕ. (1.69)

This means that

Ŝ =
VmIm

2
cosϕ+ j

VmIm
2

sinϕ. (1.70)

Recalling equation (1.66), the last formula can be written as

Ŝ = P + jQ, (1.71)

where

Q =
VmIm

2
sinϕ (1.72)

is called reactive power. This power is generated but not consumed. This

power is provided to increase the energy stored in electromagnetic fields of

power loads. It is clear that the origin of this power is due to the presence

of energy storage elements (capacitors and inductors) in power loads which

are responsible for time phase shift between input voltages and currents.

However, at resonance conditions when input voltages and currents are in

phase (sinϕ = 0), no reactive power is generated and provided to the loads.

At these resonance conditions, exchange of reactive power occurs between

capacitive and inductive components of the power loads.
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Fig. 1.12

From formulas (1.68) and (1.71), we obtain the following expressions for

active (P ) and reactive (Q) powers in terms of phasors:

P = Re
(
Ŝ
)

= Re

(
1

2
V̂ Î∗

)
, (1.73)

Q = Im
(
Ŝ
)

= Im

(
1

2
V̂ Î∗

)
. (1.74)

Next, we shall return to formula (1.66) and discuss the very important

issue of power factor, which is defined as cosϕ in that formula. It has

already been discussed that one of the principles adopted in operation of

power systems is to provide electric power to a customer at more or less

constant peak value Vm of voltage. Thus, if a certain (fixed) amount of

power has to be delivered to a load at constant Vm, this means that the

product Im cosϕ is fixed as well. As a result, there are two options of de-

livering the same power: at higher peak value of current and lower value

of power factor, or lower peak value of current and higher value of power

factor. It is obvious that the second option is preferable. This is because

if the same power is delivered at smaller peak value of current, then this

power delivery results in smaller power losses in the connecting wires of dis-

tribution and transmission lines. These power losses are unproductive and

they result in heating of the environment as well as in the overall increase

of the cost of consumed power. Thus, the problem of adjustment of power

factor presents itself. For inductive-type loads where input voltages lead in

time input currents, the adjustment of power factor can be accomplished

by placing capacitors across loads and choosing proper values of their ca-

pacitances. We shall discuss this matter in detail below. The first step in

choosing the proper capacitance is the representation of inductive load by

the equivalent RL circuit shown in Figure 1.12. The resistance and induc-

tance of this equivalent circuit can be determined (identified) by applying

to the load an ac voltage of known peak value Vm and then measuring the
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peak value Im of the input current and active power P . The parameters of

the RL circuit can be chosen to result in the same Im and P for the same

Vm. Indeed, the impedance Z of the RL circuit can be written as

Z = |Z|ejϕ = |Z| cosϕ+ j|Z| sinϕ = R+ jωL, (1.75)

and, consequently,

R = |Z| cosϕ, ωL = |Z| sinϕ. (1.76)

From the measured data we find

|Z| = Vm
Im

, cosϕ =
2P

VmIm
. (1.77)

By using the last two expressions in (1.76), we can find the resistance and

inductance of the equivalent RL circuit.

Now, we can proceed to the calculation of capacitance C of the capacitor

placed across the terminals of the inductive-type load (see Figure 1.13a)

that adjusts the power factor to one. The calculation is based on the

equivalent circuit shown in Figure 1.13b. According to KCL, we have

Î = ÎC + Î`. (1.78)

On the other hand, the following expressions can be written for ÎC and Î`:

ÎC = jωCV̂ , (1.79)

Î` =
V̂

R+ jωL
= V̂

R− jωL
R2 + ω2L2

= V̂

(
R

R2 + ω2L2
− j ωL

R2 + ω2L2

)
.

(1.80)
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By substituting the last two formulas into equation (1.78), after simple

transformations we find

Î =
R

R2 + ω2L2
V̂ + j

(
ωC − ωL

R2 + ω2L2

)
V̂ . (1.81)

We choose capacitance C in such a way that

ωC − ωL

R2 + ω2L2
= 0, (1.82)

which is the case if

C =
L

R2 + ω2L2
. (1.83)

If the capacitance is chosen in accordance with formula (1.83), then the

equation (1.81) is reduced to

Î =
R

R2 + ω2L2
V̂ , (1.84)

or

Ime
jϕI =

RVm
R2 + ω2L2

ejϕV . (1.85)

It is apparent from the last formula that

ϕV = ϕI , ϕ = ϕV − ϕI = 0, cosϕ = 1, (1.86)

and the adjustment of power factor is accomplished.

It is apparent that the choice of capacitance in accordance with formula

(1.83) results in a resonance condition where no reactive power is supplied

to the load from generators and instead there exists an exchange of reactive

power between the inductor of the load and the capacitor.

Practically, adjustment of power factor exactly to one does not occur

because loads (and the inductances and resistances representing them) vary

with time. There is another, more fundamental reason not to adjust the

power factor exactly to one. This is because a leading power factor (ϕ < 0)

may have a beneficial effect on maintaining constant peak value voltage

across the loads as they vary in time. We consider this problem in detail

because it is quite interesting in its own right. To start the discussion,

consider a simple (per-phase) circuit model of ac transmission line shown

in Figure 1.14. Here, the effect of the transmission line is modeled by

reactance X, while the load (with parallel capacitance for power factor

adjustment) is represented by impedance Z`. Resistance of the transmission

line is neglected because it is usually much smaller than reactance X. We



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 153

Introduction to Power Systems 153

Fig. 1.14

want to study how the peak value Vm� of the voltage across the load varies

with consumed power P as well as what the maximum power Pmax that

can be delivered to the load is. It is apparent that this problem is similar

to the problem discussed in the first section of this chapter (see Figure 1.2)

for the case of dc transmission. It is apparent that there exists some phase

shift θ in time between the source voltage vs(t) and the load voltage v�(t):

vs(t) = Vms cosωt, (1.87)

v�(t) = Vm� cos(ωt− θ). (1.88)

This means that

V̂s = Vms, (1.89)

V̂� = Vm�e
−jθ. (1.90)

From the circuit shown in Figure 1.14, we find

Î =
V̂s − V̂�

jX
, (1.91)

and

Î∗ = j
V̂ ∗
s − V̂ ∗

�

X
=

V̂ ∗
s − V̂ ∗

�

X
ej

π
2 . (1.92)

Now by using formula (1.68), we find

Ŝ =
V̂�Î

∗

2
=

V̂�

(
V̂ ∗
s − V̂ ∗

�

)

2X
ej

π
2 , (1.93)

or

Ŝ =
V̂�V̂

∗
s

2X
ej

π
2 − j

V 2
m�

2X
. (1.94)

Next, by using formulas (1.89), (1.90) and (1.94), we obtain

Ŝ =
Vm�Vms

2X
ej(

π
2 −θ) − j

V 2
m�

2X
, (1.95)
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which can be further transformed as follows:

Ŝ =
Vm`Vms

2X
sin θ + j

(
Vm`Vms

2X
cos θ − V 2

m`

2X

)
. (1.96)

According to formulas (1.66), (1.71) and (1.72), we can write

Ŝ = P (1 + jα), (1.97)

where

α = tanϕ. (1.98)

By comparing formulas (1.96) and (1.97), we conclude that

P =
VmsVm`

2X
sin θ, (1.99)

αP =
VmsVm`

2X
cos θ − V 2

m`

2X
. (1.100)

The last equation can be written in the form

αP +
V 2
m`

2X
=
VmsVm`

2X
cos θ. (1.101)

From formulas (1.99) and (1.101), we derive

P 2 +

(
αP +

V 2
m`

2X

)2

=
V 2
msV

2
m`

4X2
. (1.102)

This is the sought equation that relates the peak value Vm` of the voltage

across the load to the consumed power P . It is clear that this is a quadratic

equation for V 2
m`. If its discriminant D is positive for a given P , then it has

two real solutions. It has one real solution when the discriminant is equal

to zero and no real solution when the discriminant is negative. Thus, there

are two distinct branches of the relation Vm` vs. P .

Consider first the case of P = 0. Then, according to equation (1.102),

we find

V 4
m`

4X2
=
V 2
msV

2
m`

4X2
. (1.103)

It is obvious that the last equation has two solutions,

Vm` = 0 and Vm` = Vms. (1.104)

For the sake of notational simplicity, we introduce new variable

λ = V 2
m` (1.105)



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 155

Introduction to Power Systems 155

and rewrite the equation (1.102) as

P 2 +

(
αP +

λ

2X

)2

= λ
V 2
ms

4X2
, (1.106)

which can be further transformed to result in

λ2 − λ
(
V 2
ms − 4αXP

)
+ 4

(
1 + α2

)
X2P 2 = 0. (1.107)

For the discriminant of this equation, we find

D =
1

2

[(
V 2
ms − 4αXP

)2 − 16
(
1 + α2

)
X2P 2

] 1
2

. (1.108)

It is clear from the last formula that D > 0 for P = 0 and that D is

decreased as P is increased. Thus, the value Pmax at which

D = 0 (1.109)

satisfies the equation

V 2
ms − 4αXPmax = 4

√
1 + α2XPmax, (1.110)

and, consequently,

Pmax =
V 2
ms

4X
(√

1 + α2 + α
) . (1.111)

It is clear that Pmax has the physical meaning of maximum power that

can be delivered to the load. Indeed, a power larger than Pmax is not

consistent with peak value Vm` of the load voltage being a real number. In

the particular case when the power factor is adjusted to one (i.e., ϕ = 0),

from formulas (1.98) and (1.111) we find

Pmax =
V 2
ms

4X
, (1.112)

which is similar to formula (1.6). It is also easy to see from formula (1.111)

that Pmax is monotonically increased if α is negative and decreased. This

suggests that a leading power factor (ϕ < 0) may be beneficial in increasing

Pmax.

Furthermore, from equation (1.107) we find that under the condition

(1.109),

λ =
V 2
ms − 4αXPmax

2
. (1.113)
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Fig. 1.15

According to formula (1.105), this means that the maximum power Pmax
can be delivered at load voltage peak value V maxm` which is given by the

equation

V maxm` =

(
V 2
ms − 4αXPmax

2

) 1
2

. (1.114)

This is the value of Vm` at which the lower and upper branches of Vm`
vs. P are connected. The last formula suggests that V maxm` is increased

and approaches Vms when α is negative. This means that a leading power

factor (ϕ < 0) may be beneficial in maintaining Vm` for varying loads.

The presented discussion is illustrated by Figure 1.15 where relations

Vm` vs. P are plotted for different values of power factor. It is interesting

to mention that the existence of lower branches of relations Vm` vs. P is

sometimes used for the explanation of the “voltage collapse” phenomenon

that has been observed in power systems.

We conclude this section by the discussion of ac power in three-phase

circuits with balanced load (Figure 1.16). In the case of balanced load

Za = Zb = Zc, (1.115)

and, for this reason, the phase shifts in time between load voltage and load

current are the same for all three phases:

ϕa = ϕb = ϕc = ϕ. (1.116)
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Fig. 1.16

By using this fact, we find

pa(t) = va(t)ia(t) = [Vm cosωt][Im cos(ωt− ϕ)]

=
VmIm

2
cosϕ+

VmIm
2

cos(2ωt− ϕ), (1.117)

pb(t) = vb(t)ib(t) =

[
Vm cos

(
ωt− 2π

3

)][
Im cos

(
ωt− 2π

3
− ϕ

)]

=
VmIm

2
cosϕ+

VmIm
2

cos

(
2ωt− ϕ− 4π

3

)
, (1.118)

pc(t) = vc(t)ic(t) =

[
Vm cos

(
ωt− 4π

3

)][
Im cos

(
ωt− 4π

3
− ϕ

)]

=
VmIm

2
cosϕ+

VmIm
2

cos

(
2ωt− ϕ− 2π

3

)
. (1.119)

The total instantaneous power is given by the equation

p(t) = pa(t) + pb(t) + pc(t). (1.120)

By using formulas (1.117), (1.118), (1.119) and (1.120), we get

p(t) =
3VmIm

2
cosϕ+

VmIm
2

[
cos(2ωt− ϕ) + cos

(
2ωt− ϕ− 2π

3

)

+ cos

(
2ωt− ϕ− 4π

3

)]
. (1.121)

It is clear that the expression in brackets in the last formula is equal to

zero, because the sum of three sinusoidal functions of the same frequency
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and phase-shifted by 2π
3 with respect to one another is equal to zero at any

instant of time. Thus,

p(t) =
3

2
VmIm cosϕ = const, (1.122)

which means that in three-phase circuits with balanced loads electric energy

is consumed at a constant rate in time. The last equation also implies that

P = p(t) =
3

2
VmIm cosϕ. (1.123)

In the last equation Vm and Im are peak values of phase voltage and current.

The last formula can be written in the equivalent form

P =
√

3V`Iph cosϕ, (1.124)

where V` and Iph are rms values of line voltage and phase current. It is left

to the reader as a simple exercise to prove the last formula.
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Chapter 2

Fault Analysis

2.1 Fault Analysis by Using the Thevenin Theorem.

It has been discussed previously that it is very desirable to operate power

systems under balanced load conditions and usually special efforts are made

to achieve this mode of operation. However, these balanced load conditions

may be disrupted by faults in power systems. Power line faults are the

most common because the power lines are exposed to inclement weather

conditions such as lightning strikes, icing, high winds, trees falling, etc. Line

faults may result in very large currents that may damage very expensive

power equipment. For this reason, proper relay protection systems are used

to detect faults and minimize their destructive effects. The design of the

relay protection systems is based on accurate predictions of fault currents in

power systems. Such predictions can be obtained through accurate analysis

of line faults.

The most typical line faults are the single line-to-ground (SLG) faults,

line-to-line (LL) faults and double line-to-ground (DLG) faults. The analy-

sis of these faults is discussed in this chapter, and two techniques are devel-

oped to carry out this analysis. The first technique, which is presented in

this section, is based on the Thevenin theorem, while the second technique

is based on the very important concept of symmetrical components and

extensively discussed in subsequent sections of this chapter.

We begin with a basic review of the Thevenin theorem. Consider a

branch with impedance Z connected to an active linear circuit (see Figure

2.1a). The term “active” implies that this circuit contains voltage (and/or

current) sources. The Thevenin theorem states that as far as the current Î

through this branch is concerned, the linear active circuit can be replaced

by an equivalent nonideal voltage source shown in Figure 2.1b. If the pa-

159



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 160

160 Fundamentals of Electric Power Engineering

Fig. 2.1

Fig. 2.2

rameters V̂s and Zs of the nonideal voltage source are computed, then the

current Î can be easily determined:

Î =
V̂s

Zs + Z
. (2.1)

The proof of the Thevenin theorem is based on the linearity of the active

circuit and it is usually given in textbooks on electric circuit theory (see,

for instance, [35]). This proof also reveals the physical meaning of V̂s and

Zs, and this allows to formulate the following three-step technique for the

analysis of electric circuits based on the Thevenin theorem.

Step 1. The branch with impedance Z is removed (see Figure 2.2) and the

open-circuit voltage V̂oc across the open terminals is computed. Usually,

the removal of impedance Z greatly simplifies the circuit and makes its
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Fig. 2.3

analysis relatively easy. It turns out that (see [35])

V̂s = V̂oc. (2.2)

Step 2. In this step, the active circuit shown in Figure 2.3a is transformed

into a passive circuit by replacing voltage sources by short-circuit branches

and current sources by open-circuit branches (see Figure 2.3). Then, the in-

put impedance Zin of this passive circuit with respect to the open terminals

is computed (see Figure 2.3b). It turns out that (see [35])

Zs = Zin. (2.3)

Step 3. Once the open-circuit voltage and input impedance are computed,

then the finding of current Î is accomplished by using formula (2.1).

Now, we proceed with the application of the Thevenin theorem to the

analysis of SLG fault shown in Figure 2.4a. The location of SLG fault is

marked by letters a, b and c on lines connected to V̂a, V̂b and V̂c, respectively.

Impedances of these lines before the location of the fault are the same and

equal to Z′. Impedances of the lines after the fault location are connected in

series with the load impedances and their lumped (equivalent) impedances

are equal to Z. It is apparent that before the fault the current În through

the grounded neutral is equal to zero. It is also clear from the circuit shown

in Figure 2.4a that immediately after the SLG fault this current is equal to

the fault current Îf . Thus, the measured current În can be used in principle

for the detection of fault occurrence as well as its location. The latter may

be possible because the analysis performed below results in explicit formulas

for Îf in terms of Z′, which depends on the fault location.

To find the fault current Îf (and subsequently all currents), we shall use

the Thevenin equivalent circuit shown in Figure 2.4b. The analysis consists

of the following four steps.
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Fig. 2.4

Step 1. The branch with impedance Zf is removed and voltage V̂oc across

the open terminals is computed. The removal of Zf results in the circuit

shown in Figure 2.5a. This is a three-phase circuit under balanced load

conditions. For this reason, the potentials of nodes O′ and O are the same

and equal to zero (V̂O′ = V̂O = 0) and the current În is equal to zero as

well. To find V̂oc, the per-phase analysis (see Figure 2.5b) can be used,

which easily leads to the following formula:

V̂s = V̂oc = V̂a
Z

Z + Z ′ . (2.4)

Step 2. The active circuit shown in Figure 2.5a is transformed into the

passive circuit (see Figure 2.6a) by replacing voltage sources by short-circuit

branches. Now, the input impedance of this passive circuit with respect

to the open terminals a and g must be computed. The computation is
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appreciably simplified by redrawing this circuit in the form shown in Figure

2.6b. Indeed, as a result of this redrawing, series and parallel connections of

different impedances become easily recognizable, and the input impedance

can be computed as follows:

Zin =

(
Z′+Z

2 + Z ′
)
Z

Z′+Z
2 + Z′ + Z

+ Zn. (2.5)

After simple algebraic transformation, the last formula can be written as

Zs = Zin =
(3Z ′ + Z)Z + 3Zn (Z ′ + Z)

3 (Z′ + Z)
. (2.6)
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Step 3. Now, we can compute the fault current Îf by using the formula

Îf =
V̂s

Zs + Zf
. (2.7)

According to formula (2.6), we find

Zs + Zf =
(3Z ′ + Z)Z + 3(Zn + Zf ) (Z

′ + Z)

3 (Z′ + Z)
. (2.8)

By substituting formulas (2.4) and (2.8) into equation (2.7), we obtain

Îf = V̂a
3Z

(3Z ′ + Z)Z + 3(Zn + Zf ) (Z ′ + Z)
. (2.9)
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Step 4. Finally, we can find all currents in the three-phase circuit shown

in Figure 2.4a. Indeed, it is clear from this figure that Zf and Zn are

connected in series. Consequently, we have

În = Îf . (2.10)

Then, by using KVL for the loop traced from a to g, from g to O and from

O to a, we find

Îf (Zf + Zn)− ÎaZ = 0 (2.11)

and

Îa = Îf
Zf + Zn

Z
. (2.12)

Next, by applying KCL to the node a, we conclude that

Î ′a = Îa + Îf . (2.13)

Now, by applying KVL to the loop traced from O to a, from a to O′, from

O′ to b and from b to O, we obtain

Î ′aZ
′ + ÎaZ − Îb (Z ′ + Z) = V̂a − V̂b, (2.14)

which leads to

Îb =
V̂b − V̂a + Î ′aZ

′ + ÎaZ

Z ′ + Z
. (2.15)

Finally, by using KCL for the node O′, we have

Îc = −
(
Î ′a + Îb

)
. (2.16)

Thus, by computing the fault current according to equation (2.9) and then

by using formulas (2.10), (2.12), (2.13), (2.15) and (2.16), we can compute

all currents in the three-phase circuit shown in Figure 2.4a. This concludes

the analysis of a single line-to-ground (SLG) fault.

Next, by using the Thevenin Theorem, we consider analysis of line-to-

line (LL) fault shown in Figure 2.7a. As before, the central idea of our

analysis is to reduce the three-phase circuit shown in Figure 2.7a to the

Thevenin equivalent circuit shown in Figure 2.7b. The analysis consists of

the following four steps.

Step 1. The impedance Zf is removed and voltage V̂oc across the open

terminals is computed. The removal of Zf results in the circuit shown in

Figure 2.8. This is a three-phase circuit with balanced load. Consequently,
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Îa =
V̂a

Z ′ + Z
, Îb = αÎa, Îc = α2Îa. (2.17)

Now, by using KVL for the loop traced from a to O, from O to b and from

b to a, we find

ÎaZ − ÎbZ − V̂oc = 0, (2.18)

which leads to

V̂oc =
(
Îa − Îb

)
Z. (2.19)

According to the first two formulas from (2.17), the last equation can be

transformed as follows:

V̂s = V̂oc =
(1− α)Z

Z ′ + Z
V̂a. (2.20)
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Step 2. The active circuit shown in Figure 2.8 is transformed to the

passive circuit shown in Figure 2.9a. This is done by replacing the voltage

sources by short-circuit branches. Now, the input impedance of this passive

circuit with respect to the open terminals a and b must be computed. The

computation is greatly simplified by redrawing this circuit as shown in

Figure 2.9b. (Please note that the line c branch consisting of Z ′ and Z is

omitted because it is short-circuited.) From Figure 2.9b, we find

Zs = Zin = 2
Z ′Z

Z ′ + Z
. (2.21)

Step 3. Now, we can compute the fault current Îf by using the formula

Îf =
V̂s

Zs + Zf
. (2.22)

According to equation (2.21), we have

Zs + Zf =
2Z ′Z + Zf (Z

′ + Z)

Z ′ + Z
. (2.23)

By substituting formulas (2.20) and (2.23) into equation (2.22), we arrive

at

Îf = V̂a
(1− α)Z

2Z ′Z + Zf (Z ′ + Z)
. (2.24)
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Step 4. Finally, we can find all currents in the three-phase circuit shown

in Figure 2.7a. Indeed, by using KVL for the loop traced from O′ to a,

from a to O and from O to O′, we find
(
Îa + Îf

)
Z ′ + ÎaZ = V̂a, (2.25)

which leads to

Îa =
V̂a − ÎfZ

′

Z ′ + Z
. (2.26)

Then,

Î ′a = Îa + Îf . (2.27)
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Similarly, by using KVL for the loop traced from O′ to b, from b to O and

from O to O′, we obtain (
Îb − Îf

)
Z ′ + ÎbZ = V̂b, (2.28)

which leads to

Îb =
V̂b + ÎfZ

′

Z ′ + Z
, (2.29)

and then

Î ′b = Îb − Îf . (2.30)

Current Îc is found by applying KVL to the loop traced from O′ to c, from

c to O and from O to O′:

Îc =
V̂c

Z ′ + Z
. (2.31)

By using KCL for node O, we find

În = −
(
Îa + Îb + Îc

)
. (2.32)

Thus, by computing the fault current Îf using equation (2.24) and then

by using formulas (2.26), (2.27), (2.29), (2.30), (2.31) and (2.32), we can

compute all currents in the three-phase circuit shown in Figure 2.7a. This

concludes the analysis of LL fault.

In the conclusion of this section, we shall sketch the analysis of double

line-to-ground (DLG) fault by using the Thevenin theorem. This fault is

presented in Figure 2.10a. The central idea of our analysis is to reduce the

three-phase circuit shown in Figure 2.10a to the Thevenin equivalent circuit

shown in Figure 2.10b. As before, the analysis consists of the following four

steps.

Step 1. The impedance Zbf is removed and voltage V̂oc across the open

terminals is computed. The removal of Zbf results in the circuit shown in

Figure 2.11. This circuit is identical to the three-phase circuit of SLG fault

analyzed at the beginning of this section. By using this analysis V̂s = V̂oc
can be found.

Step 2. The active circuit shown in Figure 2.11 is replaced by the passive

circuit shown in Figure 2.12a. This is done by replacing voltage sources

by short-circuit branches. Then, this passive circuit is redrawn as shown
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in Figure 2.12b to make series and parallel connections apparent. The re-

drawn circuit is used to compute Zs = Zin.

Step 3. Now, the fault current Îbf can be computed by using the Thevenin

equivalent circuit as well as V̂s and Zs found in the first and second steps,

respectively.

Step 4. By using the found value of Îbf , all currents in the three-phase

circuit shown in Figure 2.10a can be computed. This can be done by

computing these currents in the following order: Îb, Î
′
b, Îc, Î

′
a, Îa and Îaf .

It is left to the reader as an exercise to perform all the computations and

derivations sketched in our discussion.
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2.2 Symmetrical Components

The method of symmetrical components was developed in electric power

engineering for the analysis of unbalanced regimes and faults in power sys-

tems. In this section, we present the definition and the basic mathematical

facts related to the symmetrical components. In the subsequent two sec-

tions, these facts are extensively used for the analysis of faults in power

systems.

Symmetrical components can be introduced for three-phase currents

and three-phase voltages or any other three-phase quantities. We first con-

sider three-phase currents. There are three distinct sets of symmetrical

components: the positive-sequence set, the negative-sequence set and the

zero-sequence set. These sets are defined below.

In the case of the positive-sequence set, one deals with three phasors

Î+a , Î+b , Î+c (2.33)

with the properties ∣∣∣Î+a
∣∣∣ =

∣∣∣Î+b
∣∣∣ =

∣∣∣Î+c
∣∣∣ , (2.34)

Î+b = αÎ+a , Î+c = α2Î+a , (2.35)

where, as before, α = e−j 2π
3 . It is worthwhile to point out that the prop-

erty (2.34) follows from the property (2.35). These three phasors can be
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considered as the phasors of three electric currents of the same frequency

and the same peak values but phase-shifted with respect to one another by
2π
3 . A phasor diagram for these currents is shown in Figure 2.13a.

In the case of the negative-sequence set, one deals with three phasors

Î−a , Î−b , Î−c (2.36)

with the properties
∣∣∣Î−a

∣∣∣ =
∣∣∣Î−b

∣∣∣ =
∣∣∣Î−c

∣∣∣ , (2.37)
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Î−b = α2Î−a , Î−c = αÎ−a . (2.38)

Again, it is apparent that relation (2.37) follows from (2.38). These three

phasors can be considered as the phasors of three electric currents of the

same frequency and the same peak values but phase-shifted by 4π
3 with

respect to one another. A phasor diagram for these currents is shown in

Figure 2.13b.

Finally, in the case of the zero-sequence set, one deals with three phasors

Î0a , Î0b , Î0c (2.39)

with the properties

Î0a = Î0b = Î0c . (2.40)

These three phasors can be considered as the phasors of three electric cur-

rents of the same frequency and the same peak values and which are in

phase with one another. A phasor diagram for these currents is shown in

Figure 2.13c.
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It turns out that an arbitrary set of three currents with phasors Îa, Îb
and Îc (see Figure 2.14) can be decomposed into symmetrical components.

Mathematically, this means that

Îa = Î0a + Î+a + Î−a , (2.41)

Îb = Î0b + Î+b + Î−b , (2.42)

Îc = Î0c + Î+c + Î−c . (2.43)

By using the properties of symmetrical components expressed by formulas

(2.34), (2.35), (2.37), (2.38) and (2.40), the last three equations can be

written as follows:

Îa = Î0a + Î+a + Î−a ,

Îb = Î0a + αÎ+a + α2Î−a ,

Îc = Î0a + α2Î+a + αÎ−a .

(2.44)

(2.45)

(2.46)

The last three equations can be construed as linear simultaneous equations

with respect to Î0a , Î
+
a and Î−a . It is shown below that the solution of the

simultaneous equations is given by the following formulas:

Î0a =
1

3

(
Îa + Îb + Îc

)
,

Î+a =
1

3

(
Îa + α2Îb + αÎc

)
,

Î−a =
1

3

(
Îa + αÎb + α2Îc

)
.

(2.47)

(2.48)

(2.49)

The proof of formulas (2.47), (2.48) and (2.49) proceeds as follows. To

derive formula (2.47), we add up all three equations (2.44), (2.45) and

(2.46). This yields

Îa + Îb + Îc = 3Î0a +
(
1 + α+ α2

)
Î+a +

(
1 + α2 + α

)
Î−a . (2.50)
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Now, by taking into account that 1 + α + α2 = 0, we arrive at formula

(2.47). To derive formula (2.48), we multiply both sides of equation (2.45)

by α2, both sides of equation (2.46) by α and add them all with equation

(2.44). This yields

Îa + α2Îb + αÎc =
(
1 + α2 + α

)
Î0
a +

(
1 + α3 + α3

)
Î+
a +

(
1 + α4 + α2

)
Î−a .

(2.51)

By taking into account that α3 = 1 and α4 = α, from the last expression we

easily obtain formula (2.48). By using the same line of reasoning, formula

(2.49) can be derived. Its derivation is left to the reader as a simple exercise.

So far, we have discussed symmetrical components for three-phase cur-

rents. Symmetrical components for three-phase voltages can be intro-

duced in the identical way. Namely, we consider the positive-sequence set,

negative-sequence set and zero-sequence set of voltage phasors

V̂ +
a , V̂

+
b , V̂

+
c ; V̂ −a , V̂

−
b , V̂

−
c ; V̂ 0

a , V̂
0
b , V̂

0
c , (2.52)

which are related to one another by formulas similar to (2.34)-(2.35), (2.37)-

(2.38) and (2.40), respectively. Then, for an arbitrary set of three voltages

with phasors V̂a, V̂b and V̂c we have relations mathematically identical to

formulas (2.44)-(2.46) and (2.47)-(2.49):

V̂a = V̂ 0
a + V̂ +

a + V̂ −a ,

V̂b = V̂ 0
a + αV̂ +

a + α2V̂ −a ,

V̂c = V̂ 0
a + α2V̂ +

a + αV̂ −a

(2.53)

(2.54)

(2.55)

and

V̂ 0
a =

1

3

(
V̂a + V̂b + V̂c

)
,

V̂ +
a =

1

3

(
V̂a + α2V̂b + αV̂c

)
,

V̂ −a =
1

3

(
V̂a + αV̂b + α2V̂c

)
.

(2.56)

(2.57)

(2.58)

It is worthwhile to point out that by using formulas (2.47)-(2.49) and (2.56)-

(2.58) we can compute Î0
a , Î+

a , Î−a and V̂ 0
a , V̂ +

a , V̂ −a , i.e., symmetrical

components associated with phase a. Then, symmetrical components for

phases b and c can be determined by using formulas (2.35), (2.38) and (2.40)

for currents and similar formulas for voltages.

It is apparent from the above discussion that the transformations from

three-phase quantities to their symmetrical components are linear transfor-

mations. For this reason, any linear combination of three-phase quantities
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can be represented as the same linear combination of their symmetrical

components.

Now, we consider some examples that will be used in our future discus-

sions.

Example 1. Given

Îa 6= 0, Îb = Îc = 0, (2.59)

it is required to find symmetrical components Î0
a , Î+

a and Î−a .

By substituting formulas (2.59) into equations (2.47), (2.48) and (2.49),

we find

Î0
a = Î+

a = Î−a =
1

3
Îa. (2.60)

Example 2. Given

V̂a = V̂b = V̂c, (2.61)

it is required to find symmetrical components V̂ 0
a , V̂ +

a and V̂ −a .

By using the relation (2.61) in formulas (2.56), (2.57) and (2.58) and

taking into account that 1 + α+ α2 = 0, we find

V̂ 0
a = V̂a, while V̂ +

a = V̂ −a = 0. (2.62)

Example 3. Given a set of three-phase voltages

V̂a, V̂b = αV̂a, V̂c = α2V̂a, (2.63)

it is required to find V̂ 0
a , V̂ +

a and V̂ −a .

By using relations (2.63) in formulas (2.56), (2.57) and (2.58), we easily

establish that

V̂ +
a = V̂a, while V̂ 0

a = V̂ −a = 0. (2.64)

Example 4. Consider three currents Îa, Îb and Îc in three branches

connected into star (without a neutral) as shown in Figure 2.15. It is

required to prove that

Î0
a = 0. (2.65)

According to KCL, we have

Îa + Îb + Îc = 0. (2.66)

Then, by using formula (2.47), we conclude that

Î0
a =

1

3

(
Îa + Îb + Îc

)
= 0. (2.67)
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Thus, it can be concluded that a star connection (without neutral) can

be used as a filter of zero-sequence components of three-phase currents.

It is also easy to prove that a delta connection may serve as a filter of

zero-sequence components of three-phase voltages.

Next, we introduce some matrices associated with symmetrical compo-

nents. To this end, we interpret phasors V̂a, V̂b and V̂c as well as V̂ 0
a , V̂

+
a

and V̂ −
a as components of three-dimensional vectors



V̂a

V̂b

V̂c


 and



V̂ 0
a

V̂ +
a

V̂ −
a


 . (2.68)

Then, equations (2.53)-(2.55) can be written in the matrix form as


V̂a

V̂b

V̂c


 = A



V̂ 0
a

V̂ +
a

V̂ −
a


 , (2.69)

where

A =



1 1 1

1 α α2

1 α2 α


 . (2.70)

Similarly, equations (2.56)-(2.58) can be written in the form


V̂ 0
a

V̂ +
a

V̂ −
a


 = B



V̂a

V̂b

V̂c


 , (2.71)

where

B =
1

3



1 1 1

1 α2 α

1 α α2


 . (2.72)
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It is apparent from formulas (2.69) and (2.71) that

B = A−1 and A = B−1, (2.73)

i.e., matrices B and A are inverses of one another. It is apparent that

equations (2.44)-(2.46) and (2.47)-(2.49) can also be written in terms of

matrices A and B.

It is also useful to write equations (2.53)-(2.55) in the following vector

form: V̂aV̂b
V̂c

 = V̂ 0
a

 1

1

1

+ V̂ +
a

 1

α

α2

+ V̂ −a

 1

α2

α

 . (2.74)

It is clear from the last formula that vectors

e0 =

 1

1

1

 , e+ =

 1

α

α2

 , e− =

 1

α2

α

 (2.75)

serve as basis vectors in the symmetrical component decomposition of ar-

bitrary vector (V̂a, V̂b, V̂c)
T . It is easy and interesting to demonstrate that

vectors e0, e+ and e− are orthogonal with respect to inner product

〈x,y〉 =
3∑
k=1

xky
∗
k. (2.76)

Indeed, we have 〈
e+, e0

〉
= 1 + α+ α2 = 0. (2.77)

Similarly, 〈
e−, e0

〉
= 1 + α2 + α = 0. (2.78)

Finally,〈
e+, e−

〉
= 1 + α

(
α2
)∗

+ α2α∗ = 1 + αα∗ (α∗ + α)

= 1 + |α|2
(
ej

2π
3 + e−j

2π
3

)
= 1 + 2 cos

2π

3
= 0. (2.79)

(Alternatively, the previous result can be shown by noting that α∗ = α2.)

Thus, vectors e0, e+ and e− form an orthogonal basis in the decomposition

(2.74). It is easy to see that the components of these vectors represent the

zero-sequence set, the positive-sequence set and the negative-sequence set of

phasors with magnitudes normalized (equal) to one. This explains the use

of superscripts “0”, “+” and “−” for these vectors. Furthermore, vectors

e0, e+ and e− are eigenvectors of specific matrices frequently encountered
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in power systems with balanced loads. In generic form, these matrices can

be written as follows:

T =

d+ c c c

c d+ c c

c c d+ c

 , (2.80)

where d and c are arbitrary complex numbers. These matrices have the

same diagonal elements and the same off-diagonal elements. We shall next

prove that

Te0 = (d+ 3c)e0, (2.81)

Te+ = de+ (2.82)

and

Te− = de−. (2.83)

First, we prove formula (2.81) by using the following calculations:

Te0 =

d+ c c c

c d+ c c

c c d+ c

 1

1

1


=

d+ 3c

d+ 3c

d+ 3c

 = (d+ 3c)

 1

1

1

 = (d+ 3c)e0. (2.84)

Next, we prove formula (2.82):

Te+ =

d+ c c c

c d+ c c

c c d+ c

 1

α

α2


=

 d+ c
(
1 + α+ α2

)
αd+ c

(
1 + α+ α2

)
α2d+ c

(
1 + α+ α2

)
 = d

 1

α

α2

 = de+, (2.85)

where again the fact that 1 + α+ α2 = 0 has been used.

The proof of formula (2.83) is similar to the proof of formula (2.82) and

is left to the reader as a simple exercise.

Thus, it has been established that e0, e+ and e− are eigenvectors of

T-type matrices with eigenvalues d+ 3c, d and d, respectively. This means

that the symmetrical component decomposition (2.74) can be construed

as an eigenvector decomposition. It is also interesting to observe that the

columns and rows of matrix A coincide with the vectors e0, e+ and e−,
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i.e., with the eigenvectors of T matrices. For this reason, T matrices can

be diagonalized by the following similarity transformation:

A−1TA =



d+ 3c 0 0

0 d 0

0 0 d


 . (2.86)

This fact is well known from linear algebra and it will be instrumental in

the derivation of the sequence networks discussed in the next section.

2.3 Sequence Networks

In this section, we derive the sequence networks for symmetrical compo-

nents applicable to a general fault case of three-phase circuits shown in

Figure 2.16. In the next section, these sequence networks will be used for

the analysis of particular (SLG, LL and DLG) faults. The derivation con-

sists of four distinct steps.

Step 1. In this step, three coupled equations for Îa, Îb, Îc and Îaf , Îbf ,

Îcf are constructed. This is done by writing first the following four KCL
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equations for nodes a, b, c and O:

Î ′a = Îa + Îaf , (2.87)

Î ′b = Îb + Îbf , (2.88)

Î ′c = Îc + Îcf , (2.89)

În = Îa + Îb + Îc. (2.90)

Then, we use these formulas in writing the following three KVL equations

for the loops that can be easily recognized from the equation structures:(
Îa + Îaf

)
Z ′ + ÎaZ +

(
Îa + Îb + Îc

)
Zn = V̂a, (2.91)(

Îb + Îbf

)
Z ′ + ÎbZ +

(
Îa + Îb + Îc

)
Zn = V̂b, (2.92)(

Îc + Îcf

)
Z ′ + ÎcZ +

(
Îa + Îb + Îc

)
Zn = V̂c. (2.93)

Step 2. In this step, we transform these coupled equations to the form that

can be represented in terms of a T-type matrix. In doing so, we combine

terms with the same currents Îa, Îb and Îc and move terms with the fault

currents to the right-hand sides. These transformations yield

Îa (Z ′ + Z + Zn) + ÎbZn + ÎcZn = V̂a − ÎafZ ′, (2.94)

ÎaZn + Îb (Z ′ + Z + Zn) + ÎcZn = V̂b − ÎbfZ ′, (2.95)

ÎaZn + ÎbZn + Îc (Z ′ + Z + Zn) = V̂c − ÎcfZ ′. (2.96)

Now, we introduce the matrix

T =

Z ′ + Z + Zn Zn Zn
Zn Z ′ + Z + Zn Zn
Zn Zn Z ′ + Z + Zn

 (2.97)

and write the coupled equations in the matrix form

T

ÎaÎb
Îc

 =

V̂a − ÎafZ ′V̂b − ÎbfZ ′
V̂c − ÎcfZ ′

 . (2.98)

Step 3. In this step, we demonstrate that the last coupled equations can

be completely decoupled when they are written in terms of symmetrical

components. To this end, we introduce the following change of variables:ÎaÎb
Îc

 = A

 Î0
a

Î+
a

Î−a

 , (2.99)
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where Î0
a , Î+

a and Î−a are symmetrical components of Îa, Îb and Îc.

Similarly, we represent the vector in the right-hand side of equation

(2.98) in terms of symmetrical components,V̂a − ÎafZ ′V̂b − ÎbfZ ′
V̂c − ÎcfZ ′

 = A

 V̂ 0
a − Î0

afZ
′

V̂ +
a − Î+

afZ
′

V̂ −a − Î−afZ ′

 , (2.100)

where V̂ 0
a , V̂ +

a and V̂ −a are symmetrical components of V̂a, V̂b and V̂c, while

Î0
af , Î+

af and Î−af are symmetrical components of Îaf , Îbf and Îcf . In writing

formula (2.100), we also tacitly used the linearity of the transformation

between three physical quantities and their symmetrical components.

It has been shown in Example 3 of the previous section that for three-

phase voltages V̂a, V̂b = αV̂a and V̂c = α2V̂a, we have

V̂ +
a = V̂a, while V̂ 0

a = V̂ −a = 0. (2.101)

By using the relations in (2.101), we can rewrite formula (2.100) as follows:V̂a − ÎafZ ′V̂b − ÎbfZ ′
V̂c − ÎcfZ ′

 = A

 −Î0
afZ

′

V̂a − Î+
afZ

′

−Î−afZ ′

 . (2.102)

By substituting formulas (2.99) and (2.102) into equation (2.98), we obtain

TA

 Î0
a

Î+
a

Î−a

 = A

 −Î0
afZ

′

V̂a − Î+
afZ

′

−Î−afZ ′

 . (2.103)

Next, we multiply both sides of equation (2.103) by A−1 to get

A−1TA

 Î0
a

Î+
a

Î−a

 =

 −Î0
afZ

′

V̂a − Î+
afZ

′

−Î−afZ ′

 . (2.104)

Now, by recalling formula (2.86) and taking into account that according to

(2.97), d = Z ′ + Z and c = Zn, we find

A−1TA =

Z ′ + Z + 3Zn 0 0

0 Z ′ + Z 0

0 0 Z ′ + Z

 . (2.105)

This means that equation (2.104) can be written in the formZ ′ + Z + 3Zn 0 0

0 Z ′ + Z 0

0 0 Z ′ + Z


 Î0

a

Î+
a

Î−a

 =

 −Î0
afZ

′

V̂a − Î+
afZ

′

−Î−afZ ′

 . (2.106)
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Thus, we have arrived at the set of three decoupled equations for symmet-

rical components Î0a , Î
+
a and Î−a .

Step 4. In this step, each of the decoupled equations (2.106) is interpreted

as a KVL equation for a specific circuit called a sequence network. We start

with the first equation,

Î0a (Z
′ + Z + 3Zn) = −Î0afZ

′, (2.107)

and represent it in the form
(
Î0a + Î0af

)
Z ′ + Î0a (Z + 3Zn) = 0. (2.108)

Next, we can write the three equations (2.87), (2.88) and (2.89) in terms

of symmetrical components as follows:

Î ′(0)a = Î0a + Î0af , (2.109)

Î ′(+)
a = Î+a + Î+af , (2.110)

Î ′(−)
a = Î−a + Î−af , (2.111)

where Î
′(0)
a , Î

′(+)
a and Î

′(−)
a are symmetrical components of Î ′a, Î

′
b and Î ′c.

By using formula (2.109), equation (2.108) is transformed as follows:

Î ′(0)a Z ′ + Î0a(Z + 3Zn) = 0. (2.112)

Now, it is clear that the last equation can be interpreted as the KVL equa-

tion for the zero-sequence network shown in Figure 2.17. It is also clear
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Fig. 2.18

that the KCL equations at nodes a and g are identical to equation (2.109).

The reason why these nodes are marked as a and g and the voltage across

these nodes is marked as V̂ 0
ag will be explained later.

The second equation in (2.106) is

Î+a (Z ′ + Z) = V̂a − Î+afZ
′. (2.113)

This equation can be written in the form
(
Î+a + Î+af

)
Z ′ + Î+a Z = V̂a. (2.114)

By taking into account equation (2.110), we find

Î′(+)
a Z ′ + Î+a Z = V̂a. (2.115)

Now, it is clear that the last equation can be interpreted as the KVL equa-

tion for the positive-sequence network shown in Figure 2.18. Furthermore,

the KCL equations at nodes a and g are equivalent to equation (2.110).

Finally, the last equation in (2.106) is

Î−a (Z′ + Z) = −Î−afZ
′, (2.116)

which is equivalent to
(
Î−a + Î−af

)
Z ′ + Î−a Z = 0. (2.117)

By using equation (2.111), we find

Î′(−)
a Z ′ + Î−a Z = 0. (2.118)
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The last equation can be interpreted as the KVL equation for the negative-

sequence network shown in Figure 2.19. It is also clear that the KCL

equations for nodes a and g are identical to equation (2.111).

To conclude the derivation of the sequence networks shown in Figures

2.17, 2.18 and 2.19, it is necessary to explain the rationale behind the

markings of the nodes and the voltages across these nodes in these networks.

To this end, we shall use the original three-phase circuit shown in Figure

2.16 and write the following KVL equations for the loops that can be easily

identified from the equation structures:

V̂a = Î ′aZ
′ + V̂ag, (2.119)

V̂b = Î ′bZ
′ + V̂bg, (2.120)

V̂c = Î ′cZ
′ + V̂cg. (2.121)

These three equations can be written in terms of symmetrical components

as follows:

0 = Î ′(0)a Z ′ + V̂ 0
ag, (2.122)

V̂a = Î ′(+)
a Z ′ + V̂ +

ag, (2.123)

0 = Î ′(−)
a Z ′ + V̂ −

ag, (2.124)

where V̂ 0
ag, V̂

+
ag and V̂ −

ag are symmetrical components of V̂ag, V̂bg and V̂cg,

while the symmetrical components of V̂a, V̂b and V̂c are given by formula

(2.101).

Now, it is clear that equations (2.122), (2.123) and (2.124) coin-

cide with KVL equations written for the zero-sequence, positive-sequence



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 186

186 Fundamentals of Electric Power Engineering

Fig. 2.20

and negative-sequence networks, respectively. This justifies the notations

adopted for the nodes and voltages across these nodes in those networks.

The previous derivation has been performed for the three-phase circuit

(see Figure 2.16) with the node O′ being grounded. Some modification in

the derivation of the sequence networks is needed in the case when this

node is not grounded (see Figure 2.20). It is clear that in this case, we have

Î ′a + Î ′b + Î ′c = 0. (2.125)

Furthermore, the following three KVL equations can be written:

Î ′aZ
′ + ÎaZ + ÎnZn + V̂gO′ = V̂a, (2.126)

Î ′bZ
′ + ÎbZ + ÎnZn + V̂gO′ = V̂b, (2.127)

Î ′cZ
′ + ÎcZ + ÎnZn + V̂gO′ = V̂c. (2.128)

By summing up the last three equations and by taking into account formula

(2.125) and the fact that for three-phase voltage sources we have

V̂a + V̂b + V̂c = 0, (2.129)

we derive (
Îa + Îb + Îc

)
Z + 3

(
ÎnZn + V̂gO′

)
= 0. (2.130)

This means that

ÎnZn + V̂gO′ = −
(
Îa + Îb + Îc

) Z

3
. (2.131)
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By substituting formula (2.131) into equations (2.126), (2.127) and (2.128)

as well as taking into account formulas (2.87), (2.88) and (2.89), we obtain

Îa

(
Z ′ +

2Z

3

)
− Îb

Z

3
− Îc

Z

3
= V̂a − ÎafZ ′, (2.132)

−Îa
Z

3
+ Îb

(
Z ′ +

2Z

3

)
− Îc

Z

3
= V̂b − ÎbfZ ′, (2.133)

−Îa
Z

3
− Îb

Z

3
+ Îc

(
Z ′ +

2Z

3

)
= V̂c − ÎcfZ ′. (2.134)

It is clear that the last three equations can be written in the form (2.98)

with matrix T being

T =


Z ′ + 2Z

3 −Z3 −Z3
−Z3 Z ′ + 2Z

3 −Z3
−Z3 −Z3 Z ′ + 2Z

3

 . (2.135)

Now, by literally repeating the same reasoning which led from equation

(2.98) to equation (2.106), we shall arrive at the following decoupled equa-

tions: Z ′ 0 0

0 Z ′ + Z 0

0 0 Z ′ + Z


 Î0

a

Î+
a

Î−a

 =

 −Î0
afZ

′

V̂a − Î+
afZ

′

−Î−afZ ′

 . (2.136)

It is apparent that the second and third equations in (2.136) are identical

to the second and third equations in (2.106). This implies that the positive-

sequence and negative-sequence networks for the three-phase circuit shown

in Figure 2.20 are the same as for the circuit shown in Figure 2.16.

The first equation in (2.136) is

Î0
a = −Î0

af , (2.137)

which is consistent with equation (2.109) because according to formula

(2.125) (see also Example 4 from the previous section) we have Î
′(0)
a = 0.

This equation is not sufficient to derive the zero-sequence network. To

accomplish the latter, we shall use the following three KVL equations:

ÎaZ + ÎnZn = V̂ag, (2.138)

ÎbZ + ÎnZn = V̂bg, (2.139)

ÎcZ + ÎnZn = V̂cg. (2.140)
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By summing up the last three equations and taking into account formula

(2.90), we find (
Îa + Îb + Îc

)
(Z + 3Zn) = V̂ag + V̂bg + V̂cg. (2.141)

Now, by recalling formulas (2.47) and (2.56), the last equation can be writ-

ten as

Î0
a(Z + 3Zn) = V̂ 0

ag. (2.142)

This suggests that the zero-sequence network has the form shown in Figure

2.21a. It is clear that this circuit is consistent with equations (2.137) and

(2.142). For the sake of completeness, we present in Figure 2.21 all three

sequence networks for the three-phase circuit shown in Figure 2.20.

It is worthwhile to stress in the conclusion of this section that the derived

sequence networks are general in nature and valid for any particular (SLG,

LL and DLG) fault. They are also remarkably simple in comparison with

the three-phase circuits shown in Figures 2.16 and 2.20. They represent

relations between symmetrical components of physical quantities related to

only one phase a. In this sense, they can be construed as the far-reaching

generalization of per-phase analysis to unbalanced (fault) conditions.

2.4 Analysis of Faults by Using Sequence Networks

This analysis is performed by using the following steps:

a) from the nature of the fault, find the relation between symmetrical com-

ponents Î0
af , Î+

af and Î−af ;

b) from the nature of the fault, find the relation between symmetrical com-

ponents V̂ 0
ag, V̂

+
ag and V̂ −ag;

c) interconnect the sequence networks in accordance with these relations;

d) carry out the analysis of the circuit obtained as a result of interconnec-

tion of the sequence networks.

We shall illustrate this outlined approach by the three examples of analysis

of SLG, DLG and LL faults.

Example 1. SLG Fault

Consider the circuit shown in Figure 2.22.

Step 1. According to the nature of the fault shown in this figure, we find

that

Îaf = Îf 6= 0, (2.143)
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Fig. 2.21

while

Îbf = Îcf = 0. (2.144)

This implies (see Example 1 from section 2 of this chapter) that

Î0af = Î+af = Î−af =
1

3
Îf . (2.145)
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Fig. 2.22

Step 2. From the nature of the fault shown in Figure 2.22, we observe that

V̂ag = ÎfZf =
1

3
Îf (3Zf ). (2.146)

Next, we use the relation

V̂ag = V̂ 0
ag + V̂ +

ag + V̂ −
ag. (2.147)

From the last two formulas we derive

V̂ 0
ag + V̂ +

ag + V̂ −
ag =

1

3
Îf (3Zf ). (2.148)

Step 3. From relations (2.145) and (2.148) we conclude that the three

sequence networks shown in Figure 2.21 (as well as the impedance 3Zf )

must be connected in series to form the loop as shown in Figure 2.23a. It

is clear from this figure that the relations (2.145) and (2.148) between the

symmetrical components are satisfied for the electric circuit constructed in

this figure.

Step 4. Finally, we shall carry out the analysis of this circuit to find Îf
and all other currents. It is easy to see that the circuit in Figure 2.23a can

be equivalently transformed into the circuit in Figure 2.23b with

Z̃ =
Z ′Z

Z ′ + Z
+ Z + 3(Zn + Zf ) =

(2Z ′ + Z)Z + 3(Zn + Zf )(Z
′ + Z)

Z ′ + Z
.

(2.149)
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Fig. 2.23

Then, according to the voltage divider rule, we find

V̂ +
ag = V̂a

ZZ̃

Z + Z̃

Z ′ +
ZZ̃

Z + Z̃

= V̂a
ZZ̃

Z ′Z + Z̃ (Z ′ + Z)
. (2.150)
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Furthermore,

1

3
Îf =

V̂ +
ag

Z̃
= V̂a

Z

Z ′Z + Z̃ (Z ′ + Z)
. (2.151)

Finally, by using formula (2.149), we obtain

Îf = V̂a
3Z

(3Z ′ + Z)Z + 3(Zn + Zf ) (Z ′ + Z)
, (2.152)

which is identical to formula (2.9) derived by using the Thevenin theorem.

Now, all other currents can be determined by using the same reasoning

as presented after formula (2.9) or by using the circuit shown in Figure

2.23a. Indeed, from formula (2.150), we find

Î+
a =

V̂ +
ag

Z
= V̂a

Z̃

Z ′Z + Z̃ (Z ′ + Z)
. (2.153)

Furthermore, we have

Î−a = −1

3
Îf

Z ′

Z ′ + Z
, (2.154)

and

Î0
a = −1

3
Îf . (2.155)

By using symmetrical components Î+
a , Î−a and Î0

a , currents Îa, Îb and Îc
are found according to formulas

Îa = Î0
a + Î+

a + Î−a , (2.156)

Îb = Î0
a + αÎ+

a + α2Î−a , (2.157)

Îc = Î0
a + α2Î+

a + αÎ−a . (2.158)

Finally,

În = −Îf , Î ′a = Îa + Îf . (2.159)

This concludes the analysis.

Example 2. DLG Fault

Consider the circuit shown in Figure 2.24.

Step 1. According to the nature of the fault shown in this figure, we find

that

Îaf = 0. (2.160)
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On the other hand,

Îaf = Î0af + Î+af + Î−af . (2.161)

Consequently,

Î0af + Î+af + Î−af = 0. (2.162)

Step 2. From the nature of the fault shown in Figure 2.24, we observe that

V̂ag �= 0, V̂bg = V̂cg = 0. (2.163)

This means (see Example 1 from section 2 of this chapter) that

V̂ 0
ag = V̂ +

ag = V̂ −
ag =

1

3
V̂ag. (2.164)

Step 3. From relations (2.162) and (2.164), we conclude that the three

sequence networks shown in Figure 2.21 must be connected in parallel as

shown in Figure 2.25a. Indeed, it is clear from this figure that the relations

(2.162) and (2.164) are satisfied by the electric circuit shown in this figure.

Step 4. Finally, we shall carry out the analysis of the electric circuit

shown in Figure 2.25a. It is easy to see that this circuit can be equivalently

transformed into the circuit shown in Figure 2.25b, where

Z̃ =
1

Ỹ
, Ỹ =

1

Z ′ +
1

Z
+

1

Z + 3Zn
. (2.165)
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Fig. 2.25

Then, we find

V̂ +
ag = V̂a

ZZ̃

Z + Z̃

Z ′ +
ZZ̃

Z + Z̃

= V̂a
ZZ̃

Z ′Z + Z̃ (Z ′ + Z)
. (2.166)
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Furthermore,

Î+af =
V̂ +
ag

Z̃
= V̂a

Z

Z ′Z + Z̃ (Z ′ + Z)
, (2.167)

Î−af = −
V̂ +
ag (Z

′ + Z)

Z ′Z
, (2.168)

Î0af = −
V̂ +
ag

Z + 3Zn
. (2.169)

As soon as symmetrical components Î+af , Î
−
af and Î0af are found, the fault

currents Îbf and Îcf can be computed by using the formulas

Îbf = Î0af + αÎ+af + α2Î−af , (2.170)

Îcf = Î0af + α2Î+af + αÎ−af . (2.171)

It is left to the reader as a simple exercise to find all other currents.

Example 3. LL Fault

Consider the circuit shown in Figure 2.26.

Step 1. According to the nature of the fault shown in the above figure, we

have

Îaf = 0, (2.172)
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while

Îbf = −Îcf = Îf . (2.173)

By recalling the relation

Î0
af =

1

3

(
Îaf + Îbf + Îcf

)
, (2.174)

from the last three formulas we find

Î0
af = 0. (2.175)

Furthermore, we derive

Î+
af =

1

3

(
Îaf + α2Îbf + αÎcf

)
=
α2 − α

3
Îf , (2.176)

and

Î−af =
1

3

(
Îaf + αÎbf + α2Îcf

)
= −α

2 − α
3

Îf . (2.177)

The last two equations imply that

Î+
af + Î−af = 0. (2.178)

Step 2. From the nature of the fault shown in Figure 2.26, we observe that

V̂cg = V̂bg − ÎfZf . (2.179)

Next, we shall use the last formula to derive

V̂ +
ag =

1

3

(
V̂ag + α2V̂bg + αV̂cg

)
=

1

3

(
V̂ag + α2V̂bg + αV̂bg

)
− α

3
ÎfZf ,

(2.180)

as well as

V̂ −ag =
1

3

(
V̂ag + αV̂bg + α2V̂cg

)
=

1

3

(
V̂ag + αV̂bg + α2V̂bg

)
− α2

3
ÎfZf .

(2.181)

By subtracting formula (2.181) from formula (2.180), we find

V̂ +
ag − V̂ −ag =

α2 − α
3

ÎfZf . (2.182)

By taking into account relation (2.176) in the last equation, we find

V̂ +
ag − V̂ −ag = Î+

afZf . (2.183)

Step 3. It follows from formulas (2.178) and (2.183) that the positive-

sequence and negative-sequence networks shown in Figure 2.21 must be
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connected in the manner illustrated by Figure 2.27a. Indeed, it is clear

from this figure that the relations (2.178) and (2.183) are satisfied by the

electric circuit in this figure.

Step 4. Next, we shall carry out the analysis of the electric circuit presented

in Figure 2.27a. To this end, the above circuit is equivalently transformed

into the circuit shown in Figure 2.27b. This transformation implies that

Z̃ = Zf +
Z ′Z

Z ′ + Z
=

Z ′Z + Zf (Z
′ + Z)

Z ′ + Z
. (2.184)
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Then, we find that

V̂ +
ag = V̂a

Z̃Z

Z̃ + Z

Z ′ +
Z̃Z

Z̃ + Z

= V̂a
ZZ̃

Z ′Z + Z̃ (Z ′ + Z)
. (2.185)

Furthermore,

Î+
af =

V̂ +
ag

Z̃
= V̂a

Z

Z ′Z + Z̃ (Z ′ + Z)
. (2.186)

Now, by substituting formula (2.184) into the last equation, we derive

Î+
af = V̂a

Z

2Z ′Z + Zf (Z ′ + Z)
. (2.187)

Next, we recall that

Îf = Îbf = Î0
af + αÎ+

af + α2Î−af , (2.188)

which, according to formulas (2.175) and (2.178), leads to

Îf =
(
α− α2

)
Î+
af . (2.189)

By substituting formula (2.187) into the last equation, we find

Îf = αV̂a
(1− α)Z

2Z ′Z + Zf (Z ′ + Z)
. (2.190)

Since V̂b = αV̂a, we obtain

Îf = V̂b
(1− α)Z

2Z ′Z + Zf (Z ′ + Z)
, (2.191)

which is consistent with formula (2.24) derived by using the Thevenin the-

orem. Actually, these two formulas are identical after the proper change

of phase markings. It is left to the reader to derive the expressions for all

other currents.
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Chapter 3

Transformers

3.1 Design and Principle of Operation of the Transformer;

The Ideal Transformer

A transformer is a device that finds numerous applications which range from

power systems to power electronics and further to computer-communication

networks. In power systems, transformers are used to step up and step

down ac voltages. For this reason, they are essential for the transmission,

distribution and utilization of electric power. Transformers can also be

used to electrically isolate sources from loads and for impedance matching

purposes. This explains why transformers are vital components in many

low-power and high-frequency applications.

A power transformer is a static device in which two (or more) coils (usu-

ally called windings) are strongly electromagnetically coupled. One of the

windings, known as the primary, receives power at a certain voltage and fre-

quency from the source, while the other winding, known as the secondary,

delivers power to the load at a different voltage but the same frequency.

To enhance electromagnetic coupling between the primary and secondary

windings, they are placed around the same leg of iron (ferromagnetic) core.

This iron core is subject to a time-varying magnetic flux which links the

primary and secondary windings. Since the iron core usually has a finite

(nonzero) conductivity, this time-varying magnetic flux induces eddy cur-

rents in the iron core. These eddy currents may produce substantial power

losses called eddy current losses (see section 3.5 of Part I). To reduce eddy

current losses, the iron core is laminated. This means that the iron core

is assembled of a very large number of very thin steel laminations which

are electrically isolated from one another by very thin oxidation or varnish

layers. The steel used for transformer laminations is customarily called

199
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transformer steel. It is usually deliberately doped with silicon to reduce

its intrinsic conductivity without appreciably affecting its high magnetic

permeability. This reduction in steel conductivity further diminishes eddy

current losses. Transformer steel is a soft magnetic material with a narrow

hysteresis loop, and this leads to the reduction of hysteresis losses. Eddy

current and hysteresis losses are called core losses. There are also winding

(joule) losses due to winding resistances as well as stray losses due to eddy

currents induced by stray (leakage) magnetic fields in conductive materi-

als of the transformer’s support structures. High-power and high-voltage

transformers have elaborate cooling and insulating systems. For instance,

such transformers can be placed in metallic tanks filled with transformer

(highly refined mineral) oil that both cools and insulates the windings.

The basic design of small high-frequency transformers used in power

electronics and communication networks is quite different from the design

of power transformers. To illustrate this point, consider briefly the design

of Ethernet transformers widely used for interfacing computers with com-

munication networks. The main function of these transformers is not to

step up or step down ac voltages but rather to suppress common-mode

(noise) signals and transmit with minimal distortions the differential-mode

(information carrier) signals in the wide frequency range of 0.1 MHz-100

MHz. In these wideband Ethernet transformers, toroidal ferrite cores are

used, and their primary and secondary windings usually have the same

number of turns and they are wound together in bifilar manner. The mid-

points of primary and secondary windings are grounded, and this midpoint

grounding results in low impedances of primary and secondary windings to

common-mode signals and their effective filtering out.

To stress better the main principle of operation of transformers, we shall

first consider a two-winding ideal transformer whose schematic depiction is

shown in Figure 3.1. In the case of the ideal transformer, we neglect the

small resistances R1 and R2 of the primary and secondary windings, respec-

tively. We also neglect leakage flux linkages ψ`, which are due to the small

number of magnetic field lines that partially (or completely) go through

air and link only one of the two coils. In other words, it is assumed that

all magnetic field lines are entirely confined to the ferromagnetic core and,

consequently, all these magnetic field lines link both coils. We also assume

that the magnetic permeability µc of the ferromagnetic core is infinite, while

the conductivity of the same core σc is equal to zero. All the mentioned
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Fig. 3.1

assumptions are summarized below:

R1 = R2 = 0, ψ� = 0, µc = ∞, σc = 0. (3.1)

As mentioned above, by neglecting the leakage flux, we assume that all

turns of the primary and secondary windings are linked with the same flux

Φ(t) which is formed by the magnetic field lines entirely confined to the

core. This means that the flux linkages ψ1(t) and ψ2(t) of the primary and

secondary windings are given by the following formulas, respectively:

ψ1(t) = N1Φ(t), (3.2)

ψ2(t) = N2Φ(t), (3.3)

where N1 and N2 are the numbers of turns of the primary and secondary

windings. Since we neglect the resistances of the primary and secondary

windings, the primary and secondary voltages are equal to the voltages

induced due to the time variations of ψ1(t) and ψ2(t):

v1(t) =
dψ1(t)

dt
= N1

dΦ(t)

dt
, (3.4)

v2(t) =
dψ2(t)

dt
= N2

dΦ(t)

dt
. (3.5)

From the last two equations we find

v1(t)

v2(t)
=

N1

N2
. (3.6)
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It is customary to introduce the turns ratio

a =
N1

N2
(3.7)

and to write equation (3.6) in the form

v1(t)

v2(t)
= a. (3.8)

If the applied (source) voltage v1(t) of the primary winding is sinusoidal,

v1(t) = Vm1 cos(ωt+ ϕV ), (3.9)

then, according to formula (3.8), the secondary voltage v2(t) is sinusoidal

as well and it has the same frequency and the same initial phase. This

means that

v2(t) = Vm2 cos(ωt+ ϕV ). (3.10)

It is also clear from formula (3.8) that

Vm1

Vm2
= a. (3.11)

If we introduce the phasors V̂1 and V̂2 of the primary and secondary volt-

ages, then from formulas (3.9), (3.10) and (3.11) we find

V̂1

V̂2

= a. (3.12)

Expressions (3.8) and (3.11) clearly reveal the principle of operation of the

power transformer. They suggest that by manipulating the turns ratio a,

the desired peak value of the secondary voltage can be achieved.

In the case of Ethernet (signal) transformers when a = 1, formula (3.8)

suggests that the secondary voltage v2(t) replicates the primary voltage

v1(t) without any distortion. This implies that it is very desirable that the

performance of signal transformers closely imitates the performance of an

ideal transformer.

Next, we shall derive the expression for the ratio of primary and sec-

ondary currents. To this end, we shall use the assumptions that R1 =

R2 = 0 and σc = 0. These assumptions imply that there are no power

losses in the ideal transformer. Consequently, the instantaneous primary

power p1(t) delivered to the terminals of the primary winding must be equal

to the instantaneous secondary power p2(t) delivered to the load,

p1(t) = p2(t). (3.13)
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By taking into account that

p1(t) = v1(t)i1(t) (3.14)

and

p2(t) = v2(t)i2(t), (3.15)

formula (3.13) can be written as

v1(t)i1(t) = v2(t)i2(t). (3.16)

The last equation implies that

i1(t)

i2(t)
=
v2(t)

v1(t)
. (3.17)

Now, by recalling formula (3.8), we find

i1(t)

i2(t)
=

1

a
. (3.18)

In the case when the primary current is sinusoidal,

i1(t) = Im1 cos(ωt+ ϕI), (3.19)

the formula (3.18) implies that the secondary current is sinusoidal as well

and it has the same frequency and the same initial phase:

i2(t) = Im2 cos(ωt+ ϕI). (3.20)

Moreover, it is also clear from formula (3.18) that

Im1

Im2
=

1

a
. (3.21)

If we introduce the phasors Î1 and Î2 of the primary and secondary currents,

then from formulas (3.19), (3.20) and (3.21) we find

Î1

Î2
=

1

a
. (3.22)

It is convenient to write equations (3.12) and (3.22) in the form

V̂1 = aV̂2,

Î1 =
1

a
Î2,

(3.23)

(3.24)

which provides complete terminal characterization of the ideal transformer.

These terminal relations should be combined with KVL and KCL equations
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Fig. 3.2

for electric circuits connected to transformer terminals to completely ana-

lyze electric circuits with ideal transformers.

Now suppose that some load impedance ZL is connected to the terminals

of the secondary winding as shown in Figure 3.2a. This figure also presents

the concise circuit notation for a two-winding transformer. This notation is

used in drawings of electric circuits with transformers instead of schematics

shown in Figure 3.1. We want to find the input impedance of a loaded ideal

transformer. This input impedance is defined as

Zin =
V̂1

Î1
. (3.25)

By substituting terminal relations (3.23) and (3.24) in the last formula, we

find

Zin = a2
V̂2

Î2
. (3.26)

However, the ratio of V̂2 to Î2 is the load impedance

ZL =
V̂2

Î2
. (3.27)

By combining the last two formulas, we derive

Zin = a2ZL. (3.28)

It is clear from the last expression that, with respect to the primary ter-

minals, the ideal transformer can be represented by the equivalent circuit

shown in Figure 3.2b. The equivalence here is understood in the sense that,

as far as the relationship between the primary voltage V̂1 and primary cur-

rent Î1 is concerned, the ideal transformer and the circuit shown in Figure

3.2b are indistinguishable. It is a very powerful idea to replace an actual

complicated device by a simple equivalent electric circuit which replicates
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the terminal relations between the voltages and currents of the actual de-

vice. This idea permeates many different areas of electrical engineering.

Formula (3.28) implies that the load impedance ZL viewed from the

primary terminals of the ideal transformer is equal to a2ZL. This fact sug-

gests that ideal (and real) transformers can be used for impedance matching

purposes. We shall illustrate this point by the following example. Consider

a lossless transmission line with some load resistance RL (see Figure 3.3a).

If this resistance is not equal to the characteristic impedance Z0,

RL �= Z0 =

√
L

C
, (3.29)

then there will be forward and backward propagating waves. If the load

resistance RL is connected to the transmission line through an ideal trans-

former with turns ratio a such that

a2RL = Z0, (3.30)

then there will be no reflection at the end of the transmission line. This

is because load resistance RL acts as impedance Z0 with respect to the

terminals of this line.

3.2 Coupled Circuit Equations and Equivalent Circuit for

the Transformer

In this section, we proceed to the discussion of the transformer theory by

removing the first three assumptions in (3.1). The only assumption that

still will be in place is that σc is equal to zero, which is tantamount to

neglecting eddy current losses. These losses will be taken into account at

the very end of our discussion, albeit in a somewhat ad hoc manner.
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Our discussion will be based on the coupled circuit equations for the

primary and secondary windings. These equations can be written as follows:
v1(t) = R1i1(t) + L1

di1(t)

dt
−M di2(t)

dt
,

v2(t) = R2i2(t) + L2
di2(t)

dt
−M di1(t)

dt
.

(3.31)

(3.32)

Each right-hand side of the last two equations contains three terms which

have distinct physical meanings. The first terms represent drops of volt-

ages due to the finite resistances of the windings, the second terms represent

voltages induced due to the time variations of self-flux linkages of the wind-

ings, while the third terms represent voltages induced as a result of time

variations of mutual flux linkages of the windings. We remark that, in gen-

eral, there may be some ambiguity concerning the signs of the third terms

in the right-hand sides of the last two equations. This ambiguity may exist

because mutual flux linkages may add to or subtract from self-flux linkages.

Which of these two cases occurs depends on the relative winding directions

of the two windings as well as the relative reference directions of their cur-

rents. This ambiguity can be removed by introducing the dot convention.

However, in the case of transformers, the form of coupled circuit equations

with negative signs is somewhat preferable from the physical point of view.

This is the case because the second winding does not have an independent

source of excitation and it is excited due to the electromagnetic coupling

with the first winding. In accordance with Lenz’s law, the current i2(t) in

the second winding is always induced in such a way as to counteract the

cause of induction. The cause of induction is the primary voltage v1(t) and

the minus sign in equation (3.31) is the reflection of counteraction.

In the case of ac steady state, the coupled circuit equations can be

written in the phasor form as follows:{
V̂1 = R1Î1 + jX11Î1 − jX12Î2,

V̂2 = R2Î2 + jX22Î2 − jX12Î1,

(3.33)

(3.34)

where X11 and X22 are self-reactances of the primary and secondary wind-

ings, respectively, while X12 is the mutual reactance. These reactances are

given by the formulas

X11 = ωL1, X22 = ωL2, (3.35)

X12 = ωM. (3.36)
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Next, we shall use the coupled circuit equations to derive the expression for

the secondary (load) voltage in terms of the load current Î2. To this end,

we find from the first equation (3.33) that

Î1 =
V̂1

R1 + jX11
+

jX12

R1 + jX11
Î2. (3.37)

By substituting the last formula into the second equation (3.34), we obtain

V̂2 = − jX12

R1 + jX11
V̂1 + (R2 + jX22)

[
1− (jX12)2

(R1 + jX11)(R2 + jX22)

]
Î2.

(3.38)

It is apparent that the expression for V̂2 has two distinct terms. The first

term

V̂ ind2 = − jX12

R1 + jX11
V̂1 (3.39)

has the meaning of the secondary voltage in the case when Î2 = 0. This

means that this voltage can be physically interpreted as the voltage induced

in the secondary winding by the magnetic flux created by the current in

the primary winding. This explains the use of the superscript “ind” for V̂2

in the last formula.

Now, we shall discuss the second term in the right-hand side of equation

(3.38):

V̂ drop2 = (R2 + jX22)

[
1− (jX12)2

(R1 + jX11)(R2 + jX22)

]
Î2. (3.40)

It is clear that this term has the physical meaning of the voltage drop due

to the load current Î2. It is very desirable to have this term as small as

possible in order to maintain the secondary voltage (voltage across the load

terminals) as constant as possible in the face of continuously changing load

and load current Î2. It is understandable that the smaller V̂ drop2 , the better

the quality of the transformer.

Next, we consider another important quantity, namely, secondary short-

circuit current Îsc2 . This current occurs when the secondary winding is

accidentally short-circuited, that is, when

V̂2 = 0. (3.41)

From formulas (3.38) and (3.41) we find

Îsc2 =
jX12V̂1

(R1 + jX11)(R2 + jX22)

[
1− (jX12)2

(R1 + jX11)(R2 + jX22)

] . (3.42)
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It is apparent that the same quantity

D = 1− (jX12)2

(R1 + jX11)(R2 + jX22)
(3.43)

appears in formulas (3.40) and (3.42) for V̂ drop2 and Îsc2 , respectively. The

smaller D, the better the quality of the transformer with respect to its

ability to maintain more or less constant voltage across the load terminals

in the face of changing load current Î2. On the other hand, small D may

result in large short-circuit current Îsc2 , which is not desirable. This implies

that transformers with small D are more vulnerable to fault occurrence and

must be properly protected against such faults.

The previous discussion reveals the importance of D. This suggests the

careful analysis of this quantity which is presented below. We start with the

remark that usually the resistances are much smaller than the reactances,

R1 � X11, R2 � X22. (3.44)

By using this fact, formula (3.43) for D can be simplified as follows:

D ≈ 1− X2
12

X11X22
. (3.45)

By using equations (3.35) and (3.36) in (3.45), we find

D ≈ 1− M2

L1L2
. (3.46)

As discussed in section 3.2 of Part I, inductance L1 can be split into two

distinct components,

L1 = Lm1 + L`1, (3.47)

where Lm1 is the main inductance which is due to the flux formed by the

magnetic field lines that are entirely confined to the ferromagnetic core and

link all turns of the first winding, while L`1 is the leakage inductance which

is due to the magnetic field lines that “leak” out of the ferromagnetic core

and may not link all the turns of the winding.

Next, we shall establish the connection between mutual inductance M

and the main inductance Lm1 . First, we recall that

M =
ψ21

i1
. (3.48)

It is also clear that

ψ21 = N2Φ(1)
c , (3.49)
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where, as before, Φ
(1)
c is the magnetic flux through the core created by

i1. This flux links all N2 turns of the secondary winding. By substituting

formula (3.49) into equation (3.48), we find

M =
N2Φ

(1)
c

i1
=
N2

N1

N1Φ
(1)
c

i1
. (3.50)

If the two windings are placed around the same leg of the core (which is

usually the case in order to achieve strong electromagnetic coupling), then

Lm1 =
N1Φ

(1)
c

i1
, (3.51)

and, according to (3.50), we have

M =
N2

N1
Lm1 . (3.52)

By literally repeating the same line of reasoning as has been used in the

derivation of formula (3.52), we find

L2 = Lm2 + L`2, (3.53)

M =
N1

N2
Lm2 . (3.54)

From equations (3.47) and (3.52) as well as equations (3.53) and (3.54), we

obtain
N1

N2
M = L1 − L`1, (3.55)

N2

N1
M = L2 − L`2. (3.56)

By multiplying the last two equations, we arrive at

M2 = L1L2 − L1L
`
2 − L2L

`
1 + L`1L

`
2, (3.57)

which can be further transformed as follows:

M2

L1L2
= 1− L`1

L1
− L`2
L2

+
L`1L

`
2

L1L2
. (3.58)

It is clear that the last term in formula (3.58) is quite small in comparison

with the preceding two terms. Consequently,

M2

L1L2
≈ 1− L`1

L1
− L`2
L2
. (3.59)

By substituting the last formula into equation (3.46), we find

D ≈ L`1
L1

+
L`2
L2
. (3.60)
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The last expression clearly reveals the importance of leakage inductances.

These inductances determine the value of D, which, in turn, controls the

ability of the transformer to maintain more or less constant voltage across

the load terminals as well as the vulnerability of the transformer to acci-

dental shorts of the load terminals.

The importance of leakage inductances can also be elucidated from the

purely mathematical point of view. Consider the coupled circuit equations

(3.33)-(3.34) as a set of two linear simultaneous equations with respect to

Î1 and Î2. It is clear that the determinant ∆ of these equations is equal to

∆ = (R1 + jX11)(R2 + jX22)D. (3.61)

It is evident from formulas (3.60) and (3.61) that this determinant is quite

small and it is equal to zero when the leakage inductances (along with small

resistances R1 and R2) are neglected. This means that the set of coupled

circuit equations (3.33)-(3.34) becomes degenerate (singular) if the leak-

age inductances are neglected. In mathematics, the problems that become

degenerate if some small parameters are neglected are called singularly per-

turbed problems. Thus, in the case of strong electromagnetic coupling be-

tween the windings, the coupled circuit equations are singularly perturbed.

It has been understood in mathematics that small parameters in singularly

perturbed problems are very important because these small parameters

make the singularly perturbed problems well defined (nonsingular). This

discussion brings mathematical evidence for the importance of the leakage

inductances and also suggests that these inductances are important for any

strongly electromagnetically coupled systems.

The coupled circuit equations (3.33)-(3.34) do not contain the leakage

inductances (and corresponding reactances) explicitly. These leakage re-

actances are absorbed by and hidden within the total reactances X11 and

X22 and, as a result, their significance is masked and not immediately ap-

parent. For this reason, it is highly desirable to modify the coupled circuit

equations (3.33)-(3.34) in such a way that the leakage inductances will be

exposed and explicitly accounted for. This will also lead to the equivalent

electric circuit of the transformer.

The modification of coupled circuit equations and the derivation of the

equivalent circuit consists of the following four steps.

Step 1. As is typical in singularly perturbed problems, the small parame-

ters, i.e., leakage inductances, can be exposed as a result of the appropriate

scaling. The essence of this scaling is the introduction of scaled (primed)
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secondary voltage and secondary current

V̂ ′2 = aV̂2, (3.62)

Î ′2 =
1

a
Î2, (3.63)

where, as before, a is the turns ratio. Then, the coupled circuit equations

(3.33)-(3.34) can be written in terms of V̂ ′2 and Î ′2 as follows:{
V̂1 = R1Î1 + jX11Î1 − jaX12Î

′
2,

V̂ ′2 = a2R2Î
′
2 + ja2X22Î

′
2 − jaX12Î1.

(3.64)

(3.65)

Now, we introduce the scaled secondary resistance and secondary reactance

R′2 = a2R2, (3.66)

X ′22 = a2X22, (3.67)

and rewrite equations (3.64) and (3.65) in the form{
V̂1 = R1Î1 + jX11Î1 − jaX12Î

′
2,

V̂ ′2 = R′2Î
′
2 + jX ′22Î

′
2 − jaX12Î1.

(3.68)

(3.69)

Step 2. Next, we perform the following mathematical transformation of

the last two equations:
V̂1 = R1Î1 + j(X11 − aX12)Î1 + jaX12

(
Î1 − Î ′2

)
,

V̂ ′2 = R′2Î
′
2 + j (X ′22 − aX12) Î ′2 + jaX12

(
Î ′2 − Î1

)
.

(3.70)

(3.71)

Step 3. Now, we consider the physical meaning of the coefficients in the

above coupled equations. By using formulas (3.35), (3.36) and (3.52), we

derive

aX12 =
N1

N2
ωM =

N1

N2
ω
N2

N1
Lm1 = ωLm1 = Xm

11, (3.72)

where Xm
11 has the physical meaning of the main reactance of the primary

winding.

Next, by using formulas (3.35), (3.47) and (3.72), we find

X11 − aX12 = X11 −Xm
11 = ωL1 − ωLm1 = ωL`1 = X`

1, (3.73)

where X`
1 stands for the leakage reactance of the primary winding.

Finally, by using formula (3.67), we find

X ′22 − aX12 = a2

(
X22 −

1

a
X12

)
, (3.74)
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Fig. 3.4

which, according to equations (3.35), (3.36) and (3.54), can be further

transformed as follows:

X ′22 − aX12 = a2

(
X22 −

1

a
X12

)
= a2

(
ωL2 −

N2

N1
ωM

)
= a2ωL`2

=
(
X`

2

)′
, (3.75)

where X`
2 = ωL`2 is the leakage reactance of the secondary winding, while(

X`
2

)′
is the scaled value of this reactance. By substituting formulas (3.72),

(3.73) and (3.75) into coupled equations (3.70) and (3.71) we end up with
V̂1 = R1Î1 + jX`

1Î1 + jXm
11

(
Î1 − Î ′2

)
,

V̂ ′2 = R′2Î
′
2 + j

(
X`

2

)′
Î ′2 + jXm

11

(
Î ′2 − Î1

)
.

(3.76)

(3.77)

Step 4. Thus, by using equivalent mathematical transformations, we have

reduced the original coupled circuit equations (3.33)-(3.34) to the coupled

equations (3.76) and (3.77) in which the leakage reactances are exposed and

explicitly accounted for. The useful by-product of these transformations is

the fact that equations (3.76) and (3.77) coincide with KVL equations for

the electric circuit shown in Figure 3.4. This circuit can be considered as an

equivalent circuit for the transformer. This is because this circuit and the

transformer are described by mathematically identical sets of equations.

For this reason, the transformer and the circuit shown in Figure 3.4 are

indistinguishable as far as the relationship between the terminal voltages

and terminal currents is concerned. In other words, if the circuit in Figure

3.4 were connected to a network instead of the transformer, the currents

and voltages in the network would not be changed because in both cases

the network is described by identical sets of equations.

The load impedance of the transformer is modeled in the equivalent

circuit by its scaled value a2ZL (see Figure 3.4). Indeed, from formulas
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(3.62) and (3.63) we find

V̂ ′2

Î ′2
=
aV̂2

1
a Î2

= a2 V̂2

Î2
= a2ZL. (3.78)

It is interesting to point out that the equivalent circuit for the transformer is

not unique. Indeed, coupled equations (3.70) and (3.71) have been derived

from the original coupled circuit equations (3.33) and (3.34) by using scaling

(3.62) and (3.63). This derivation is valid for any value of the scaling

parameter a, not only when a is the turns ratio. The coupled equations

(3.70) and (3.71) coincide with KVL equations for the circuit shown in

Figure 3.5. Consequently, this circuit can be considered as an equivalent

circuit for the transformer as well. The choice of a as the turns ratio leads to

the exposure of the leakage reactances. This choice is preferable in the case

when the primary and secondary windings are strongly electromagnetically

coupled because in this case the leakage parameters are very important.

However, for not strongly coupled windings, another choice of a and another

equivalent circuit may be preferable.

Now, we shall return to the discussion of the equivalent circuit shown

in Figure 3.4. In deriving this equivalent circuit, we neglected eddy current

losses in the transformer core by assuming that σc = 0. These losses can

be accounted for in the equivalent circuit in the following ad hoc manner.

It has been shown in section 3.5 of Part I that the eddy current losses are

proportional to B2
m, where Bm is the peak value of magnetic flux density

in the core:

Pec ∼ B2
m. (3.79)

However, Bm is proportional to the peak value of magnetic flux Φcm
through the core which, in turn, is proportional to the peak value of the

voltage induced by the core flux. In the equivalent circuit shown in Figure



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 214

214 Fundamentals of Electric Power Engineering

Fig. 3.6

3.4, this voltage can be identified as voltage Vm12 across the terminals 1

and 2. Thus, we conclude that

Pec ∼ V 2
m12. (3.80)

The last formula suggests the idea of modeling the eddy current losses in

the transformer iron core by the ohmic losses PRe in an equivalent resistor

connected across the terminals 1 and 2, i.e., in parallel with Xm
11 (see Figure

3.6). The rationale behind this idea is the fact that the ohmic losses in Re
are also proportional to V 2

m12:

PRe =
V 2
m12

2Re
. (3.81)

The resistor Re can be chosen from the condition

Pec = PRe , (3.82)

which leads to

Re =
V 2
m12

2Pec
. (3.83)

The electric circuit shown in Figure 3.6 is the complete equivalent circuit

for a power transformer. It is worthwhile to stress again that the important

feature of this equivalent circuit is that leakage reactances are explicitly ac-

counted for. In power system applications, this equivalent circuit is often

simplified by neglecting small (in comparison with X`
1 and

(
X`

2

)′
) resis-

tances R1 and R′2 and by assuming that Re and Xm
11 are very large so that

the 1-2 branch can be regarded as open. This leads to the equivalent circuit

shown in Figure 3.7, which clearly reveals the unique importance of leakage

reactances in the performance of power transformers. It is also clear that

the last equivalent circuit is reduced to the equivalent circuit of the ideal

transformer (see Figure 3.2b) if the leakage reactances are neglected.
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Fig. 3.8

In our derivation of the equivalent circuit shown in Figure 3.6, resistance

Re takes into account the core losses which are due to the macroscopic eddy

currents induced in laminated ferromagnetic cores. In power electronics (as

well as in other areas of electrical engineering) toroidal transformers (see

Figure 3.8) with ferrite cores are used for high-frequency applications. For

ferrite cores, losses can be modeled by using complex magnetic permeability

µ = µ′ − jµ′′. (3.84)

The imaginary part µ′′ of such permeability accounts for losses, and µ′′ (as

well as µ′) is frequency dependent. The equivalent circuit for such trans-

formers can be derived by using the somewhat different reasoning presented

below.

As before, we shall make the distinction between the magnetic field lines

that are entirely confined to the ferrite core and field lines that partially

leak out (see Figure 3.8). This means that the coupled circuit equations



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 216

216 Fundamentals of Electric Power Engineering

can be written in the form{
V̂1 = R1Î1 + jX`

1Î1 + V̂1c,

V̂2 = R2Î2 + jX`
2Î2 + V̂2c,

(3.85)

(3.86)

where V̂1c and V̂2c are the voltages induced in the primary and secondary

windings, respectively, by the core magnetic flux formed by the field lines

confined to the core, while leakage reactances X`
1 and X`

2 account for volt-

ages induced by leakage fluxes.

To compute voltages V̂1c and V̂2c, consider a magnetic field line `c. By

applying Ampere’s Law, we find∮
`c

Ĥc · d` = N1Î1 +N2Î2. (3.87)

The right-hand side in the last formula can be modified as follows:∮
`c

Ĥc · d` = N1

(
Î1 + Î ′2

)
, (3.88)

where Î ′2 = N2

N1
Î2 = 1

a Î2.

By assuming that the magnetic field in the ferrite core is uniform, from

equation (3.88) we derive

Ĥc =
N1

(
Î1 + Î ′2

)
`c

, (3.89)

where `c in (3.89) can be construed as some average length of the toroidal

core. From the last formula we find

B̂c = µĤc =
µN1

(
Î1 + Î ′2

)
`c

, (3.90)

and

ψ̂(1)
c = N1AcB̂c =

µAcN
2
1

`c

(
Î1 + Î ′2

)
, (3.91)

where ψ̂
(1)
c is the phasor of the flux linkages of the primary winding formed

by magnetic field lines confined to the core, while Ac is the cross-sectional

area of the core.

Now, V̂1c can be computed as

V̂1c = jωψ(1)
c = Zc

(
Î1 + Î ′2

)
, (3.92)

where

Zc =
jωµAcN

2
1

`c
=
ω (µ′′ + jµ′)AcN

2
1

`c
. (3.93)
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It is clear that Zc can be presented as

Zc = Rc + jXc, (3.94)

where

Rc =
ωµ′′AcN

2
1

`c
(3.95)

and

Xc =
ωµ′AcN

2
1

`c
. (3.96)

Similarly,

ψ̂(2)
c = N2AcB̂c =

N2

N1
N1AcB̂c =

1

a
ψ̂(1)
c , (3.97)

where ψ̂
(2)
c is the phasor of the flux linkages of the secondary winding due

to the magnetic field lines confined to the toroidal core.

It is clear from the last formula that

V̂2c = jωψ(2)
c =

1

a
V̂1c =

1

a
Zc

(
Î1 + Î ′2

)
. (3.98)

Now, by substituting formulas (3.92) and (3.98) into equations (3.85) and

(3.86), respectively, and then multiplying both sides of equation (3.86) by

a and taking into account that Î2 = aÎ ′2 and V̂ ′2 = aV̂2, we derive
V̂1 = R1Î1 + jX`

1Î1 + Zc

(
Î1 + Î ′2

)
,

V̂ ′2 = R′2Î
′
2 + j

(
X`

2

)′
Î ′2 + Zc

(
Î1 + Î ′2

)
,

(3.99)

(3.100)

where, as before, R′2 = a2R2 and
(
X`

2

)′
= a2X`

2.

It is clear that equations (3.99) and (3.100) coincide with KVL equa-

tions for the electric circuit shown in Figure 3.9. In this sense, this circuit

can be construed as the equivalent circuit for the toroidal transformer with

ferrite core. It is worthwhile to stress that Rc and Xc in this equivalent

circuit are explicitly expressed by formulas (3.95) and (3.96) in terms of ge-

ometry of the toroidal core and the real and imaginary parts of its magnetic

permeability.
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Fig. 3.9

Fig. 3.10

3.3 Determination of Parameters of Equivalent Circuits;

Three-Phase Transformers

We start this section with the discussion of how some parameters of the

transformer equivalent circuit shown in Figure 3.6 can be computed. Such

computations are possible for Xm
11 and Re by using the magnetic circuit

theory presented in Chapter 3 of Part I. We shall illustrate these compu-

tations for a shell-type transformer shown in Figure 3.10a. According to

formula (3.72), we have

Xm
11 = ωLm

1 . (3.101)

On the other hand, according to formula (3.83) from Part I, we find

Lm
1 =

N2
1

Rme
, (3.102)

where Rme is the equivalent magnetic reluctance of the magnetic circuit

shown in Figure 3.10b with respect to the terminals of mmf1 representing

the primary winding.
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It is clear that

Rme = Rm1 +
Rm2Rm3

Rm2 +Rm3
, (3.103)

where

Rmk =
`k

µcAk
, (k = 1, 2, 3), (3.104)

and the meaning of the notations is the same as in Chapter 3 of Part I.

Typically, legs 2 and 3 have the same geometry and permeability. Conse-

quently,

Rm2 = Rm3 (3.105)

and formula (3.103) can be written as

Rme = Rm1 +
Rm2

2
. (3.106)

Furthermore, shell cores are often designed in such a way that

A2 = A3 =
A1

2
. (3.107)

In this case, from formulas (3.104) and (3.106), we obtain

Rme =
`1 + `2
µcA1

. (3.108)

Finally, by combining formulas (3.101), (3.102) and (3.108), we find

Xm
11 =

ωµcA1N
2
1

`1 + `2
. (3.109)

Next, we consider the computation of Re by using formula (3.83) of Part

II. It is clear that total eddy current losses Pec in the ferromagnetic core

are equal to the sum of losses in legs 1, 2 and 3:

Pec = Pec1 + Pec2 + Pec3. (3.110)

According to formula (3.235) from Part I, we have

Pec1 =
1

24
σcV1ω

2B2
m1τ

2, (3.111)

Pec2 =
1

24
σcV2ω

2B2
m2τ

2, (3.112)

Pec3 =
1

24
σcV3ω

2B2
m3τ

2, (3.113)

where V1, V2 and V3 are the volumes of legs 1, 2 and 3, respectively, Bm1,

Bm2 and Bm3 are peak values of magnetic flux density in those legs, and

τ = ∆
n is the thickness of core laminations.
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It is apparent that

Bm1 =
Φm1

A1
, (3.114)

Bm2 =
Φm2

A2
=

1

A2

Rm3

Rm2 +Rm3
Φm1, (3.115)

Bm3 =
Φm3

A3
=

1

A3

Rm2

Rm2 +Rm3
Φm1. (3.116)

Furthermore,

Vm12 = ωN1Φm1 (3.117)

and

Φm1 =
Vm12

ωN1
. (3.118)

Substituting the last expression into formulas (3.114)-(3.116) and then by

inserting these formulas into formulas (3.111)-(3.113), using the last formu-

las in equation (3.110), we derive

Pec = V 2
m12

σcτ
2

24N2
1

[
V1

A2
1

+
V2

A2
2

(
Rm3

Rm2 +Rm3

)2

+
V3

A2
3

(
Rm2

Rm2 +Rm3

)2
]
.

(3.119)

By using the last formula in equation (3.83), we obtain

Re =
12N2

1

σcτ2

[
V1

A2
1

+
V2

A2
2

(
Rm3

Rm2 +Rm3

)2

+
V3

A2
3

(
Rm2

Rm2 +Rm3

)2
] . (3.120)

This is a general formula for Re which can be simplified by taking into

account relations (3.105) and (3.107). This leads to

Re =
12A2

1N
2
1

σcτ2(V1 + 2V2)
. (3.121)

Resistances R1 and R2 of the primary and secondary windings in the trans-

former equivalent circuit can be computed by using standard formulas pro-

vided that the skin and proximity effects are negligible. The most chal-

lenging are the computations of leakage inductances L`1 and L`2 and the

reactances X`
1 and X`

2 corresponding to them. Such computations cannot

be performed by using the magnetic circuit theory because this theory ne-

glects leakage phenomena. Such computations are performed through solv-

ing magnetic field equations by using existing numerical techniques such as

finite elements or integral equations, for instance. The discussion of this

matter is beyond the scope of this text.
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Fig. 3.12

Next, we turn to the discussion of how parameters of the transformer

equivalent circuit can be determined experimentally. This is usually done

by performing open-circuit (OC) and short-circuit (SC) tests. These tests

are actually used for the determination of parameters of the approximate

equivalent circuit shown in Figure 3.11. This approximate equivalent circuit

is obtained from the equivalent circuit shown in Figure 3.6 by moving the

parallel Re-X
m
11 connection directly across the primary terminals. This

transformation is usually justified on the grounds that Re and Xm
11 are

fairly large and, consequently, current Î1 − Î ′2 (see Figure 3.6) is small in

magnitude. For this reason, current Î1 through R1 and X`
1 is almost equal

to the current Î ′2. Moreover, since R1 and X`
1 are small, the voltage across

the terminals 1-2 is almost equal to V̂1. The above approximations are

consistent with the equivalent circuit shown in Figure 3.11.

The open-circuit test is illustrated by Figure 3.12a. In this test, the

secondary winding is open and, consequently,

Î2 = aÎ ′2 = 0. (3.122)

Furthermore, the rms value of the applied primary voltage V1 in this test

is usually equal to the rated voltage Vrat of the transformer,

V1 = Vrat. (3.123)
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Fig. 3.13

The measurements produce

Ioc1 and P oc, (3.124)

which are called the primary open-circuit current and the open-circuit

power, respectively.

Since Î ′2 = 0, the approximate equivalent circuit shown in Figure 3.11

is reduced to the circuit shown in Figure 3.12b. From this circuit, we find

P oc =
V 2
rat

Re
, (3.125)

and

Re =
V 2
rat

P oc
. (3.126)

Next, from Figure 3.12b we obtain

|Y | = Ioc1

Vrat
=

√(
1

Re

)2

+

(
1

Xm
11

)2

, (3.127)

which leads to

Xm
11 =

1√(
Ioc1

Vrat

)2

−
(

1

Re

)2
. (3.128)

Thus, by using formulas (3.126) and (3.128), parameters Re and Xm
11 can be

identified from the measurements obtained through the open-circuit test.

The short-circuit test is illustrated by Figure 3.13a. In this test, the

secondary winding is short-circuited and, consequently,

V̂ ′2 = aV̂2 = 0. (3.129)
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Next, the rms value of the primary voltage is gradually increased until the

rms value of the primary current reaches the rated value Irat,

V1 = V sc1 → I1 = Irat, (3.130)

where V sc1 is called short-circuit voltage. This voltage is usually quite small;

it is mostly below 6% of the rated voltage.

As soon as V1 = V sc1 , the short-circuit power P sc is measured.

When the secondary winding is short-circuited, the approximate equiv-

alent circuit in Figure 3.11 is reduced to the circuit shown in Figure 3.13b.

This is the case because R1 + R′2 and X`
1 +

(
X`

2

)′
are much smaller than

Re and Xm
11. From the circuit in Figure 3.13b, we find

P sc = I2
rat (R1 +R′2) , (3.131)

and

R1 +R′2 =
P sc

I2
rat

. (3.132)

Next, from Figure 3.13b we obtain

|Z| = V sc1

Irat
=

√
(R1 +R′2)

2
+
[
X`

1 +
(
X`

2

)′]2
, (3.133)

which leads to

X`
1 +

(
X`

2

)′
=

√(
V sc1

Irat

)2

− (R1 +R′2)
2
. (3.134)

Thus, by using formulas (3.132) and (3.134), parameters R1 +R′2 and X`
1 +(

X`
2

)′
can be identified from the measurements obtained through the short-

circuit test. Now, the conclusion can be drawn that by using the open-

circuit and short-circuit tests the parameters of the approximate equivalent

circuit in Figure 3.11 can be completely identified. After this identification

is performed, the above equivalent circuit can be used for the analysis of

the transformer at any loading conditions.

Next, we turn to the discussion of three-phase transformers. These

transformers have three primary windings and three secondary windings.

The three-phase transformers can be designed in the way that three sets

of phase windings share the same ferromagnetic core, or three single-phase

transformers with separate ferromagnetic cores can be combined to form a

three-phase transformer. These different core designs of three-phase trans-

formers are illustrated in Figures 3.14a, b and c. In these figures, the

terminals of primary phase windings are marked by capital letters, while
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Fig. 3.14

the secondary terminals are marked by lowercase letters. The main ad-

vantage of the designs shown in Figures 3.14a and 3.14b is that there are

some savings in core materials which make these designs cheaper and reduce

overall core losses. However, a fault in any phase may damage the entire

three-phase transformer, while a similar fault in the design shown in Figure

3.14c may damage only one single-phase unit. Furthermore, single-phase

units can be separately shipped and installed, which may facilitate on-site

construction.
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Fig. 3.15

As far as connectivity of the primary and secondary phase windings is

concerned, there are four distinct possibilities listed below:

Y-Y, ∆-∆, Y-∆ and ∆-Y. (3.135)

Some of these connections are illustrated in Figures 3.14a, b and c. It is

worthwhile to mention that ∆-Y connection (with Y on the high-voltage

side) is often favored for the following reasons. There is line voltage gain of√
3 achieved beyond the voltage gain due to the turns ratio and there is a

possibility of having neutral on the high-voltage side. The Y-∆ connection

is often used at the receiving ends of power transmission lines because it

provides step-down line voltage ratios larger by
√

3. In both (∆-Y and Y-

∆) connections there is a π
6 phase shift between the primary and secondary

line voltages. To illustrate these facts, consider a ∆-Y connection shown in

Figure 3.14a. It is clear from this figure that the primary and secondary

windings corresponding to the same phase are linked by the same core

flux. Consequently, in the framework of ideal transformer assumptions, the

primary line voltage V̂AX = V̂AB and secondary phase voltage V̂ax have the

same phase and

1

a
V̂AB = V̂ax, (3.136)

provided that the primary and secondary windings have the same winding

directions (i.e., A and a are the “dotted” terminals). Formula (3.136) is

illustrated by the phasor diagrams (a) and (b) shown in Figure 3.15. In

these diagrams, vectors representing phasors V̂AB and V̂ax are parallel as
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Fig. 3.16

required by formula (3.136). From Figure 3.15b, we easily conclude that

V̂ab =
√

3V̂axe
j π6 . (3.137)

From the last two formulas we find

V̂ab =

√
3

a
V̂ABe

j π6 , (3.138)

which clearly reveals the π
6 phase shift between line voltages as well as

√
3

line voltage gain due to the ∆-Y connectivity.

The theory of the single-phase transformer discussed in the previous

section can be extended to three-phase transformers. Indeed, for each pair

of primary and secondary windings corresponding to the same phase we

can write coupled circuit equations of the type (3.33)-(3.34) and mathe-

matically transform them to obtain equations of the type (3.76)-(3.77). On

the secondary side, these equations can be coupled to the circuit equations

for the three-phase loads written in terms of primed (scaled) voltages and

currents. In this way, complete sets of equations can be obtained. In the

case of balanced loads, substantial simplifications can be achieved by using

per-phase analysis. We shall illustrate this point by considering the case of

∆ configuration of secondary windings connected to Y configuration of bal-

anced load (see Figure 3.16). In order to construct the per-phase equivalent

circuit of the three-phase transformer with the depicted secondary wind-

ing and load connectivities, we have to find the equivalent load impedance

which is equal to the ratio

V̂ ′2

Î ′2
=

(
V̂ wab

)′
(
Îwba

)′ = a2 V̂
w
ab

Îwba
. (3.139)
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To this end, we first remark that according to KCL

Îa = Îwba − Îwac. (3.140)

By using the phasor diagram shown in Figure 3.17a, we derive

Îa =
√

3Îwbae
−j π6 . (3.141)

Then, from Figure 3.16, it follows that

V̂ wab =
(
Îa − Îb

)
ZL. (3.142)

By using the phasor diagram shown in Figure 3.17b, we obtain

Îa − Îb =
√

3Îae
j π6 , (3.143)

and, according to formula (3.142), we have

V̂ wab =
√

3Îae
j π6 ZL. (3.144)

By substituting formula (3.141) into the last equation, we find

V̂ wab = 3ÎwbaZL. (3.145)

This implies in accordance with formula (3.139) that the equivalent load

impedance is

V̂ ′2

Î ′2
= a2 V̂

w
ab

Îwba
= 3a2ZL. (3.146)

This leads to the per-phase equivalent circuit shown in Figure 3.18.
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Fig. 3.18
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Chapter 4

Synchronous Generators

4.1 Design and Principle of Operation of Synchronous Gen-

erators

Synchronous generators are electrical machines that convert mechanical

energy of prime movers (turbines, water wheels, etc.) into electric energy

supplied to power systems. This energy conversion is often called electric

power generation. Most of the electric power in conventional (utility) power

systems is generated by using synchronous generators. In this sense, these

generators are indispensable components of power systems.

Synchronous generators have two major parts (see the schematic cross

section in Figure 4.1): stator and rotor separated by an air gap. The

stator is stationary as implied by its name and it is also referred to as

the armature. The stator has a laminated structure; this means that it

is usually assembled of a very large number of very thin varnished (or

oxidized) silicon steel laminations. This is done to reduce eddy current

losses. The stator has slots uniformly distributed over its interior surface.

A three-phase winding is embedded in these slots. This is a distributed

winding. The latter means that each phase of the stator winding consists

of several coils connected in series and embedded in different (but adjacent)

slots. Furthermore, these phase windings are shifted with respect to one

another along the interior circumference of the stator by 120◦ in the case

of two-pole machines (or by 240◦/p in the case of p-pole machines). As

discussed later in this chapter, these three-phase stationary windings create

uniformly rotating magnetic fields when energized (excited) by three-phase

electric currents of the same frequency and peak value but phase-shifted

(in time) by 2π
3 (or 120◦). This creation of uniformly rotating magnetic

fields is the main reason for the special design of stator windings outlined

229
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Fig. 4.1

Fig. 4.2

above. The magnetic fields created by the stator windings are usually called

armature reaction magnetic fields.

Rotors are rotating parts of synchronous generators which are mechan-

ically driven by prime movers connected to the rotor shafts. There are two

distinct designs of rotors of synchronous generators: cylindrical rotors and

salient pole-type rotors. The basic design of cylindrical rotors is illustrated

by Figure 4.2, which schematically depicts rotor cross sections in the case

of two- and four-pole machines. Two-pole machines are typical for fossil

fuel power plants, while four (or six)-pole machines are typical for nuclear

power plants. These rotors are usually driven by steam or gas turbines. For

this reason, synchronous generators with cylindrical rotors are called turbo-
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Fig. 4.3

generators. Cylindrical rotors are not laminated but forged solid pieces of

conducting ferromagnetic (steel) material. Cylindrical rotors have slots and

the conductors of distributed rotor windings (also called field windings) are

embedded in these slots. Rotor windings are excited by dc currents which

create static (with respect to the rotor) magnetic fields. The lines of such

magnetic fields are illustrated in Figure 4.2. It is clear from this figure that

the large (wide) teeth of cylindrical rotors serve as north (N) or south (S)

poles where the magnetic field lines emanate from the rotor and enter the

rotor, respectively. Recently, permanent magnet synchronous generators

have been developed and used in certain applications such as, for instance,

wind power generation. In such generators, the rotor field windings are

replaced by permanent magnets. The main advantage of such generators

is that they do not need dc power supplies for excitation of rotor wind-

ings. However, large permanent magnets are costly and the magnetic field

strength of permanent magnets is limited and not controllable.

The design of salient pole rotors is illustrated by Figure 4.3 for the case

of four-pole rotor machines. In most applications, salient pole rotor syn-

chronous generators have a large number of poles (72 poles, for instance).

These rotors are usually driven by water wheels and, for this reason, syn-

chronous generators with salient pole rotors are called hydro-generators.

As seen from Figure 4.3, salient poles have concentrated (not distributed)

windings which are wrapped around each protruding pole. These windings

are excited by dc currents which create static (with respect to the rotor)

magnetic field. The poles have pole shoes whose geometry is chosen to

create sinusoidal magnetic field distribution in the air gap. This air gap
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is strongly nonuniform and has two symmetry axes called the direct axis

(d-axis) and quadrature axis (q-axis). It is apparent (see Figure 4.3) that

δd < δq, (4.1)

where δd and δq are the lengths of the air gap along the d-axis and q-axis,

respectively. The nonuniformity of the air gap has important implications in

the theory of synchronous generators with salient pole rotors (see section 4.4

of this chapter). Salient poles have laminated structure and their pole shoes

are provided with damper windings consisting of embedded conducting bars

interconnected at their ends by conducting rings. These windings are used

to damp electromechanical rotor oscillations caused by disturbances. There

is no need for such damper windings in the case of cylindrical solid rotors

because of their intrinsic conductivity.

Each synchronous generator is equipped with an exciter which provides

dc current for the rotor (field) winding. The structure of the exciter is

usually quite complex and it has evolved over the years due to the progress

in power electronics and in permanent magnet technology. The current

tendency is to avoid sliding contacts (i.e., slip rings and brushes) and gen-

erate needed dc currents in the frames of rotating rotors. This is done,

for instance, by using rectifiers mounted on rotor shafts. As a result, dc

current produced by these rectifiers can be supplied to the rotor wind-

ing by a direct connection. The ac inputs to rectifiers may be obtained

from ac armature windings of an auxiliary (small) synchronous generator.

These small auxiliary generators have an inverted structure in the sense

that their ac armatures are mounted on the rotor shafts of the main syn-

chronous generators, while their “rotors” are stationary and produce static

(dc) magnetic fields by using, for instance, permanent magnets. In this

way, the synchronous generator may operate without depending on exter-

nal sources of electricity. There are many modifications of the described

excitation system (using, for instance, a pilot exciter), and a particular

choice of excitation system depends on the unit power of a synchronous

generator.

Synchronous generators are usually designed to maximize their power

per unit weight. This is achieved by using high currents in the rotor and

stator windings. The latter necessitates efficient cooling of these windings.

Synchronous generators are equipped with sophisticated cooling systems,

which typically employ direct water cooling of stator windings and hydrogen

cooling of rotor windings. Detailed discussion of synchronous generator

cooling systems is beyond the scope of this book.



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 233

Synchronous Generators 233

Fig. 4.4

Now, we shall proceed to the discussion of the principle of operation

of the synchronous generator. During synchronous generator operation, its

rotor is driven by a prime mover (see Figure 4.4) with a certain speed nsyn,

called synchronous speed and measured in terms of revolutions per minute

(rpm). This speed depends on the number of poles p of the synchronous

generator and it is chosen (as discussed below) to guarantee a desired fre-

quency (60 Hz in US utility power systems) of generated ac electric power.

As the rotor of the synchronous generator is driven by the prime mover, an

exciter provides dc current excitation to the rotor winding. This excitation

results in a magnetic field static (time-invariant) with respect to the rotor

but rotating with speed nsyn with respect to the stator. This rotor mag-

netic field induces emfs (internal voltages) in the three phases of the stator

windings. Due to the special design of the stator windings (i.e., their spa-

tial shift by 120◦), these emfs have the same frequency and peak values but

are phase-shifted (in time) by 2π
3 . When the stator winding is connected

to a balanced load, the currents of the same frequency and peak values but

phase-shifted (in time) by 2π
3 will flow through the three phases of the sta-

tor winding. These currents create the magnetic field which is called the

armature reaction field. It turns out (and this is demonstrated in the next

section) that the armature reaction magnetic field is uniformly rotating and

the speed ñsyn of rotation of this field is equal to the mechanical speed of

the rotor, namely,

nsyn = ñsyn. (4.2)

In other words, the rotor and the armature reaction magnetic field rotate in

synchronism. This is the reason for the name “synchronous generator.” As

a result of interaction between the armature reaction field and dc current

in the conductors of the rotor winding, the electromagnetic torque appears

which tends to slow down the speed of the rotor. The latter is true because,

according to Lenz’s law, the stator currents are always induced in such a
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way to counteract the cause of induction, which is in our case the rotating

rotor and its magnetic field. The mechanical power of the prime mover is

needed to maintain the constant synchronous speed nsyn of the rotor in

the presence of the “slowing down” action of electromagnetic torque. An

increase in consumption of electric power from the generator terminals re-

sults in an increase in currents in the stator three-phase windings because

the voltage across the generator terminals is usually maintained more or

less constant. The increase in stator currents results in the increase in

the armature reaction magnetic fields which leads to the increase in elec-

tromagnetic torque which tends to reduce the rotor speed. Consequently,

more mechanical power of the prime mover needs to be supplied to main-

tain the synchronous speed nsyn of the rotor constant. On the other hand,

a decrease in consumption of electrical power from the generator termi-

nals results in the decrease in stator currents which leads to the reduction

of braking electromagnetic torque caused by interaction between the arma-

ture reaction magnetic field and currents in the rotor windings. This means

that the prime mover mechanical power must be reduced to maintain the

synchronous speed nsyn of the rotor constant. Thus, it is clear that preserv-

ing the speed of the rotor nsyn constant in the face of continuously varying

interaction between armature reaction magnetic field and rotor currents is

the physical mechanism for conversion of mechanical energy into electric

energy. It is also clear from the above discussion that through maintaining

constant synchronous speed of the rotor the electric power is generated on

demand. Furthermore, it is worthwhile to stress here again that preserving

constant synchronous speed nsyn of the rotor is needed for maintaining the

constant frequency of generated ac electric power. In addition, the loss of

synchronism is very detrimental to the operation of the generator because it

may result in induction of appreciable eddy currents in the solid conducting

rotors of turbo-generators and large losses. The same detrimental effect of

eddy current induction in solid rotors occurs in the case of unbalanced loads

of synchronous generators. Indeed, in the case of such loads, currents in the

stator three-phase windings can be decomposed into positive, negative and

zero-sequence symmetrical components. Currents of positive sequence will

create armature reaction magnetic fields rotating in synchronism with the

rotor. However, as can be shown, currents of negative sequence will create

armature fields rotating with speed ñsyn in the direction opposite to the

rotation of the rotor. As a result, eddy currents of double frequency (120

Hz) will be induced by these fields. Zero-sequence currents will also cause

induction of eddy currents. However, these zero-sequence currents can be
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eliminated by using star without neutral connection of the stator winding.

Thus, it is clear that synchronous generators are vulnerable to unbalanced

loads and every effort must be made to maintain more or less balanced load

across the generator terminals.

It is evident from the presented discussion that the frequency of ac volt-

age across the synchronous generator terminals is maintained by preserving

the mechanical speed nsyn of the rotor, while the peak value of terminal

voltage can be controlled through proper adjustment of dc excitation of

the rotor winding. However, there is no way to control the initial phase of

the terminal voltage of the synchronous generator. This phase varies with

changes in loading conditions. For this reason, a synchronous generator

cannot be construed as an ac voltage source; it is rather a (P, V )-source.

The latter means that the real power P supplied to the power network and

the peak value Vm of the terminal voltage can be controlled by controlling

the mechanical power of the prime mover and dc excitation of the rotor

winding, respectively. This representation of the synchronous generator as

a (P, V )-source is very instrumental in the analysis of power flow in power

networks (see the next chapter of this part of the book).

Next, we shall derive the important formula for the mechanical syn-

chronous speed nsyn of the rotor that is required to generate ac electric

power of specific (desired) frequency f . The starting point of our derivation

is the observation that one cycle (i.e., one positive half-cycle and one neg-

ative half-cycle) is induced in the stationary stator winding when adjacent

north and south poles of the rotor pass by this winding. This observation

implies that one revolution of the rotor results in the induction of p/2 cycles

where, as before, p is the number of rotor poles. This, in turn, suggests that

nsynp/2 cycles are induced per one minute because nsyn has the meaning

of number of revolutions per minute. Since the frequency f of induced emf

is measured in number of cycles per second, we find

f =
nsynp

120
, (4.3)

which leads to

nsyn =
120f

p
. (4.4)

The table below presents the typical values of nsyn for synchronous gener-

ators with different numbers of poles.
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Table

f p nsyn
60 Hz 2 3600 rpm

60 Hz 4 1800 rpm

60 Hz 6 1200 rpm

60 Hz 72 100 rpm

400 Hz 2 24000 rpm

As mentioned before, the case p = 2 is typical for turbo-generators in fossil

fuel power plants, the case p = 4 is usual for turbo-generators in nuclear

power plants, the case p = 72 is representative for hydro-generators and

the case f = 400 Hz is realized in aviation. It is clear that the smaller

p, the faster the synchronous generators and the smaller their geometric

dimensions for the same output electric power. The latter is true because

in faster synchronous generators the same input mechanical power can be

achieved for smaller rotating masses. Fast synchronous generators also have

large air gaps which may approach 15 cm. One may say that “an air gap of

a synchronous generator is so large that birds can fly through it.” As will

be seen in subsequent discussions in this chapter, large air gaps decrease

the reactances of the stator windings and this is beneficial to the overall

quality of the synchronous generators.

Synchronous machines can also operate as motors. Nowadays, synchron-

ous motors with permanent magnets on rotors are widely used in various

applications. One example is spindle motors of hard disk drives in magnetic

data storage. The mechanical speed of synchronous motors is given by

formula (4.4). It is clear from this formula that this speed can be controlled

by varying frequency f of the ac voltage applied to the stator windings of

the synchronous motors. This frequency control of speed can be realized by

using ac-to-ac converters or dc-to-ac inverters which are discussed in Part

III of this book, which deals with power electronics.

4.2 Ideal Cylindrical Rotor Synchronous Generators and

Their Armature Reaction Magnetic Fields

In this section, ideal cylindrical rotor generators are discussed and their

armature reaction magnetic fields are analytically studied. In the case of

ideal cylindrical rotor machines, the analysis of electromagnetic fields is

performed under the following assumptions.
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Fig. 4.5

(1) Rotor and stator slots are neglected and the air gap is assumed to

be uniform.

(2) Magnetic saturation of the rotor and stator steel is neglected and

the magnetic permeabilities of the stator and rotor are assumed to

be infinite.

(3) Electromagnetic fields in the air gap are assumed to be two-

dimensional.

(4) Each phase of the stator winding is modeled as surface current

continuously distributed along the stator interior boundary.

For phase a, the surface density of these currents is given by the formula

ia(θ, t) = ezim cos νθ sinωt, (4.5)

where ez is the unit vector along the rotational z-axis normal to the cross-

sectional plane of the generator, while θ is the polar angle in this plane (see

Figure 4.5a). It is apparent from formula (4.5) that the surface density is

periodic with respect to θ and ν is the number of periods per one revolution

(i.e., for 0 ≤ θ ≤ 2π). It turns out that each period of surface current

density can be associated with two (north-N and south-S) poles. This is

illustrated in Figure 4.5b in the particular case when ν = 1 and

ia(θ, t) = ezim cos θ sinωt. (4.6)

In this figure the signs of ia(θ, t) are shown for time intervals when sinωt >

0, and it is clear that magnetic field lines emanate from the area of the

stator marked by N and enter the stator in the area marked by S. It is

also clear that for time intervals when sinωt < 0 the signs of ia(θ, t) are
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reversed along with directions of magnetic field lines, however the two-pole

structure of the magnetic field is preserved. This implies that p = 2 for

ν = 1. It is easy to conclude that in the general case

ν =
p

2
. (4.7)

It is customary and convenient to deal with continuously distributed mag-

netomotive force (mmf) associated with continuous distribution of surface

currents. In the theory of electric machines this mmf is denoted by F and

is defined as

Fa(θ, t) =

∫ θ

0

ia(θ′, t)d`θ′ = b

∫ θ

0

ia(θ′, t)dθ′, (4.8)

where b is the interior radius of the stator.

From formulas (4.5) and (4.8), we find

Fa(θ, t) = Fm sin νθ sinωt, (4.9)

where

Fm =
imb

ν
. (4.10)

The windings for phases b and c are also modeled by continuously dis-

tributed surface currents with the same im and ν, but phase-shifted in

time with respect to one another by 2π
3 and shifted along θ by 2π

3ν . Conse-

quently, the mmfs of these phase windings are described, respectively, by

the following formulas:

Fb(θ, t) = Fm sin

(
νθ − 2π

3

)
sin

(
ωt− 2π

3

)
, (4.11)

Fc(θ, t) = Fm sin

(
νθ − 4π

3

)
sin

(
ωt− 4π

3

)
. (4.12)

For the sake of conciseness, we shall refer in our subsequent discussion to

this three-phase winding as being shifted in space by 2π
3 . In other words,

it will be tacitly understood that the polar angle shift is scaled by 1
ν .

Now, the total magnetomotive force created by the ideal three-phase

winding can be computed as

F (θ, t) = Fa(θ, t) + Fb(θ, t) + Fc(θ, t)

= Fm

[
sin νθ sinωt+ sin

(
νθ − 2π

3

)
sin

(
ωt− 2π

3

)
+ sin

(
νθ − 4π

3

)
sin

(
ωt− 4π

3

)]
. (4.13)
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By using the trigonometric identity

sinα sinβ =
1

2
[cos(α− β)− cos(α+ β)] , (4.14)

formula (4.13) can be transformed as follows:

F (θ,t) =
3Fm

2
cos(ωt− νθ)

− Fm
2

[
cos(ωt+ νθ) + cos

(
ωt+ νθ − 2π

3

)
+ cos

(
ωt+ νθ − 4π

3

)]
.

(4.15)

By recalling the fact (see the remark after formula (1.17) in this part of

the book) that the sum of sinusoidal quantities of the same peak value and

frequency but phase-shifted (in time) with respect to one another by 2π
3 is

equal to zero, we find from the last equation that

F (θ, t) =
3Fm

2
cos(ωt− νθ). (4.16)

Next, we shall demonstrate that formula (4.16) represents a uniformly ro-

tating mmf. To do this, consider an “observer” that moves around the

interior surface of the stator and whose polar angle position at any instant

of time is defined by function θ̃(t). This “observer” will “see” at any time

t the magnetomotive force

F
[
θ̃(t), t

]
=

3Fm
2

cos
[
ωt− νθ̃(t)

]
. (4.17)

Now, the question can be asked how the “observer” should move in order

to see at any instant of time t the same value of F . It is clear that this will

be the case if

ωt− νθ̃(t) = const. (4.18)

By differentiating the last equation with respect to t, we find

ω − ν dθ̃
dt

= 0, (4.19)

and

dθ̃

dt
=
ω

ν
=

4πf

p
(rad/s). (4.20)

Thus, if the “observer” moves around the stator with constant angular

speed

Ω̃syn =
dθ̃

dt
=

4πf

p
(rad/s), (4.21)
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then the same value of F is observed. However, this is only possible if

magnetomotive force F uniformly rotates with angular speed Ω̃syn. This

speed is measured in terms of radians per second. To represent this speed

in terms of revolutions per minute (rpm), we use the relation

ñsyn =
Ω̃syn
2π
· 60 (rpm). (4.22)

By substituting formula (4.21) into the last equation, we find

ñsyn =
120f

p
. (4.23)

If the number of poles of the stator windings is the same as the number

of poles of the rotor and frequency f is the same as the frequency of the

internal voltage induced in the stator windings by the rotating magnetic

field of the rotor, then by comparing formulas (4.4) and (4.23), we find

nsyn = ñsyn. (4.24)

In other words, the magnetomotive force F rotates in synchronism with

the rotor. As we shall see below, this uniformly rotating mmf of the stator

winding creates uniformly rotating magnetic field which moves with the

same speed as the mmf. This implies that formula (4.24) has the same

meaning as formula (4.2), which means that the stator armature reaction

magnetic field and the rotor rotate in synchronism.

Now, we shall proceed to the analysis of magnetic field created by the

ideal three-phase stator winding with magnetomotive force specified by

formula (4.16). It is clear from formulas (4.8) and (4.13) that the total

surface current density

i(θ, t) = ia(θ, t) + ib(θ, t) + ic(θ, t) (4.25)

of the ideal three-phase stator winding is related to the total mmf, F (θ, t),

by the equation

i(θ, t) =
1

b

dF (θ, t)

dθ
, (4.26)

which, according to formula (4.16), leads to

i(θ, t) =
3ν

2b
Fm sin(ωt− νθ). (4.27)

It is clear that the phasor î(θ) of this current density can be written as

î(θ) = −j 3ν

2b
Fme

−jνθ. (4.28)
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The phasor of the magnetic field created by the ideal stator winding inside

the air gap satisfies the following homogeneous equations:

curl Ĥ = 0, (4.29)

div B̂ = 0, (4.30)

B̂ = µ0Ĥ (4.31)

and the boundary conditions

Ĥst
θ − Ĥ

g
θ = î for r = b, (4.32)

Ĥrot
θ − Ĥg

θ = 0 for r = a, (4.33)

where Ĥst
θ , Ĥrot

θ and Ĥg
θ are tangential θ-components of magnetic field from

the stator, rotor and gap sides, respectively, while a is the rotor radius.

Since the phasor of magnetic flux density B̂ is always finite, by using

the second assumption of the ideal machine we find that

Ĥst
θ =

B̂stθ
µ
→ 0 as µ→∞. (4.34)

Similarly, we conclude that

Ĥrot
θ = 0. (4.35)

By using the last two formulas in boundary conditions (4.32) and (4.33),

we obtain

Ĥg
θ = −î for r = b, (4.36)

Ĥg
θ = 0 for r = a. (4.37)

Now, we introduce the vector magnetic potential Â(r, θ) by formulas

B̂ = curl Â, (4.38)

div Â = 0. (4.39)

Since the magnetic field in the air gap is assumed to be two-dimensional,

the vector potential has only one (z) component,

Â(r, θ) = ezÂ(r, θ). (4.40)

From equations (4.29)-(4.31) and (4.38)-(4.39) follows that Â(r, θ) satisfies

the Laplace equation, which in the polar coordinates (r, θ) can be written

as follows:

1

r

∂

∂r

(
r
∂Â

∂r

)
+

1

r2

∂2Â

∂θ2
= 0 for a < r < b. (4.41)
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Furthermore, this vector potential satisfies the following boundary condi-

tions:

∂Â

∂r
(b, θ) = −j 3µ0ν

2b
Fme

−jνθ, (4.42)

∂Â

∂r
(a, θ) = 0. (4.43)

These boundary conditions follow from the relation

Ĥg
θ = − 1

µ0

∂Â

∂r
, (4.44)

boundary conditions (4.36) and (4.37), respectively, and formula (4.28).

Thus, the analysis of magnetic field in the air gap of the ideal machine

is reduced to the solution of boundary value problem (4.41)-(4.43). To

find the solution to this problem, we shall use the method of separation of

variables and represent Â(r, θ) in the form

Â(r, θ) = T (r)Φ(θ). (4.45)

By substituting formula (4.45) into the boundary condition (4.42), we find

T ′(b)Φ(θ) = −j 3µ0ν

2b
Fme

−jνθ. (4.46)

From the last equation follows that

Φ(θ) = e−jνθ (4.47)

and, consequently,

Â(r, θ) = T (r)e−jνθ. (4.48)

Next, by writing the Laplace equation (4.41) in the form

r2 ∂
2Â

∂r2
+ r

∂Â

∂r
+
∂2Â

∂θ2
= 0 for a < r < b (4.49)

and by substituting formula (4.48) into the last equation as well as in bound-

ary conditions (4.42) and (4.43), we derive that function T (r) is the solution

of the following boundary value problem:

r2T ′′(r) + rT ′(r)− ν2T (r) = 0 for a < r < b, (4.50)

T ′(b) = −j 3µ0ν

2b
Fm, (4.51)

T ′(a) = 0. (4.52)
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Equation (4.50) is the Euler equation whose solution can be sought in the

form

T (r) = Crα, (4.53)

where C and α are some constants.

By substituting the last formula into equation (4.50), we find

α(α− 1) + α− ν2 = 0, (4.54)

and, consequently, function (4.53) satisfies equation (4.50) for the following

two values of α:

α1 = ν, α2 = −ν. (4.55)

This implies that a general solution of equation (4.50) has the form

T (r) = C1r
ν + C2r

−ν , (4.56)

where C1 and C2 are some constants. These constants can be found from

the boundary conditions (4.51) and (4.52), which lead to the following

equations for C1 and C2:

C1b
ν−1 − C2b

−ν−1 = −j 3µ0

2b
Fm, (4.57)

C1a
ν−1 − C2a

−ν−1 = 0. (4.58)

These two equations can be easily solved and the following formulas for C1

and C2 can be derived:

C1 = −j 3µ0Fm
2b (bν−1 − a2νb−ν−1)

, (4.59)

C2 = −j 3µ0a
2νFm

2b (bν−1 − a2νb−ν−1)
. (4.60)

Finally, by using formulas (4.48), (4.56), (4.59) and (4.60) as well as simple

algebra, the following expression for Â(r, θ) can be derived:

Â(r, θ) = −j 3

2
µ0Fma

νbν

( r
a

)ν
+
( r
a

)−ν
b2ν − a2ν

e−jνθ. (4.61)

The last equation can be simplified by using the relation

a = b− δ (4.62)

where

δ � b. (4.63)
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Indeed, from the last two formulas we derive that

b2ν − a2ν ≈ 2νb2ν−1δ, (4.64)

aνbν ≈ b2ν . (4.65)

By using the last two formulas in equation (4.61) we arrive at

Â(r, θ) ≈ −j 3µ0b

4νδ
Fm

[( r
a

)ν
+
( r
a

)−ν]
e−jνθ. (4.66)

Further simplification is also possible because a < r < b and according to

formulas (4.62)-(4.63) ( r
a

)ν
+
( r
a

)−ν
≈ 2. (4.67)

This leads to

Â(r, θ) ≈ −j 3µ0b

2νδ
Fme

−jνθ. (4.68)

The last formula implies that

A(r, θ, t) ≈ 3µ0b

2νδ
Fm sin(ωt− νθ). (4.69)

It is evident from formulas (4.16) and (4.69) that the mmf and A have

spatial and temporal dependence on the same argument (ωt − νθ). This

suggests that the vector magnetic potential is uniformly rotating with syn-

chronous speed ñsyn. The latter can be proved by literally repeating the

same reasoning which led to the derivation of formula (4.23) from formula

(4.16). Since it is known that in 2D the level lines of the vector potential

coincide with magnetic flux density lines, it is naturally concluded that the

magnetic field in the gap represented by this vector potential is uniformly

rotating with synchronous speed ñsyn. A similar conclusion can be achieved

by deriving the expression for the radial component of the magnetic flux

density by using formula (4.69).

The previous discussion is based on formula (4.69) derived for cylindrical

rotor machines with uniform air gaps. However, the conclusion that the

surface current density (4.27) creates uniformly rotating magnetic field is

valid for salient pole machines (with nonuniform air gaps) as well under

the condition of synchronism nsyn = ñsyn. Indeed, under the condition of

synchronism, the surface current density does not depend on time in the

rotor frame of reference and creates static magnetic field in this reference

frame. Consequently, this field is uniformly rotating in the stator frame of

reference.
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Fig. 4.6

4.3 Design of Stator Windings and Their Reactances

In the previous section, the ideal three-phase stator windings have been

discussed. Actual stator windings are designed as discrete approximations

of ideal windings. This can be accomplished in many ways and, for this

reason, there are many different designs of stator windings. We shall not

attempt the detailed discussion of these designs, but rather we shall illus-

trate the central ideas and stress the basic facts involved in the design of

stator windings.

It is quite often that two-layer windings are used. In such windings,

there are “top” and “bottom” conductors embedded in each slot (see Figure

4.6). Furthermore, each phase winding consists of several coils connected

usually in series and embedded in several adjacent slots. The parts of coils

which are embedded in slots are called active parts, while the parts of

coils outside the slots are called end parts (see Figure 4.7). Usually, one

active (direct) part of a coil is embedded in a slot as a top conductor, while

another active (reverse) part of the same coil is embedded in a different slot

as a bottom conductor. An example of the described design of stator phase

windings is illustrated (in developed view form) by Figure 4.7 for the case of

one phase (phase a) consisting of four coils for a two-pole machine with 12

slots in the stator. It is clear from this figure that the active parts of coil 1

are embedded in slots 1 and 7 as top and bottom conductors, respectively;

those of coil 2 are in slots 2 and 8; those of coil 3 are in slots 3 and 9;

and those of coil 4 are in slots 4 and 10. It is apparent that these coils are

connected in series and that the difference between polar angles θk and θ′k
of the centers of the slots in which top and bottom parts of the same coil
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Fig. 4.7

Occupancy Table 1

slot # 1 2 3 4 5 6 7 8 9 10 11 12

top A+
1 A+

2 A+
3 A+

4 B+
1 B+

2 B+
3 B+

4 C+
1 C+

2 C+
3 C+

4

bottom B−3 B−4 C−1 C−2 C−3 C−4 A−1 A−2 A−3 A−4 B−1 B−2

number k are embedded is equal to π, i.e.,

θk − θ′k = π. (4.70)

This is the so-called full-pitch winding. Arrows in Figure 4.7 mark the

reference directions of coil currents and they reveal why the top and bottom

parts of the coils can be called direct and reverse, respectively. The stator

windings for phases b and c are designed in the same way as for phase a,

but shifted in space with respect to one another by 120◦, i.e., by four slots.

It is somewhat cumbersome to show all three phase windings in the same

Figure 4.7. However, the described design of the stator three-phase winding

can be illustrated by the Occupancy Table 1. In this table, A±k , B±k and

C±k (with k = 1, 2, 3, 4) correspond to active parts of coil number k of the

stator windings for phases a, b and c, respectively. It is clear from this

table that each phase has four full-pitch coils embedded in adjacent slots
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Fig. 4.8

and that the three windings are shifted with respect to one another by 120◦

along the stator interior circumference.

Next, we consider the mmf of each phase winding. To simplify the

reasoning, we represent each coil of the phase winding by two (direct and

reverse) filamentary conductors located on the stator surface at polar angles

θk and θ′k, respectively (see Figure 4.8). By using the definition of mmf

given by formula (4.8) and taking into account that each current-carrying

filamentary conductor can be construed as a delta-type function of surface

current density, we find after integration that the mmf Fa of phase a is a

piecewise step function represented by the solid line in Figure 4.8. It is clear

that this multi-step function is a discrete approximation of sinusoidal mmf

shown in Figure 4.8 by a dashed line. Actually, this sinusoidal mmf is the

first (fundamental) harmonic of the Fourier series expansion of the multi-

step mmf of the actual phase winding. Since the stator windings for phases

b and c are identical to the stator phase a winding except that they are

shifted in θ by 120◦ and 240◦, respectively, then the fundamental harmonics

of Fb and Fc have the same peak values as the fundamental harmonic for

Fa but are shifted in θ by 120◦ and 240◦, respectively. When the phase

windings are excited by currents of the same peak values and frequency

but phase-shifted in time by 2π
3 and 4π

3 , respectively, then the fundamental

harmonics of their mmfs will have the same mathematical forms as given by

formulas (4.9), (4.11) and (4.12). This implies that the total fundamental

harmonic of the mmf of the three-phase winding is given by formula (4.16).

In other words, the fundamental harmonic of mmf of the actual three-phase

stator winding replicates the mmf of the ideal machine and, consequently,

creates magnetic field that rotates in synchronism with the rotor. However,
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Occupancy Table 2

slot # 1 2 3 4 5 6 7 8 9 10 11 12

top A+
1 A+

2 A+
3 A+

4 B+
1 B+

2 B+
3 B+

4 C+
1 C+

2 C+
3 C+

4

bottom B−4 C−1 C−2 C−3 C−4 A−1 A−2 A−3 A−4 B−1 B−2 B−3

Occupancy Table 3

slot # 1 2 3 4 5 6 7 8 9 10 11 12

top A+
1 A+

3 B+
1 B+

3 C+
1 C+

3 A−2 A−4 B−2 B−4 C−2 C−4
bottom A+

2 A+
4 B+

2 B+
4 C+

2 C+
4 A−1 A−3 B−1 B−3 C−1 C−3

the multi-step nature of mmfs of actual stator windings results in higher-

order spatial harmonics of mmf which correspond to higher-order terms

in Fourier series expansions of these mmfs. These higher-order harmonics

create magnetic fields which are not in synchronism with the rotor. As

a result, these fields generate eddy currents in the solid conducting rotor

which are detrimental to the overall performance of synchronous generators.

For this reason, it is desirable to suppress (or “filter out”) these higher-order

spatial harmonics. This can be accomplished by using stator windings

whose coils have fractional pitch. The latter means that the relation (4.70)

is replaced by the following:

θk − θ′k = βπ, (0 < β < 1). (4.71)

An example of the design of a fractional-pitch winding is illustrated by Oc-

cupancy Table 2. It is clear that β = 5/6 for the winding design presented

in this table. However, this design of fractional-pitch winding is not prac-

tically useful. The reason is that the mmf of each coil of such winding does

not have half-wave symmetry, and this leads to the appearance of even har-

monics in this mmf and, consequently, in the total mmf of the winding. This

difficulty can be circumvented by fully exploiting the two-layer structure of

the winding. This is first accomplished by designing the full-pitch winding

as illustrated by Occupancy Table 3. Then, the fractional-pitch winding

with β = 5/6 is produced by shifting the bottom layer by one slot as shown

in Occupancy Table 4. It is clear from this occupancy table that even coils

(2 and 4) and odd coils (1 and 3) have the same pitch β = 5/6 when the

inner circumference of the stator is traversed in opposite directions. This

preserves the half-wave symmetry of the total mmf of each phase winding.

Another way to illustrate this fact is to observe that a two-layer fractional-
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Occupancy Table 4

slot # 1 2 3 4 5 6 7 8 9 10 11 12

top A+
1 A+

3 B+
1 B+

3 C+
1 C+

3 A−2 A−4 B−2 B−4 C−2 C−4
bottom C−3 A+

2 A+
4 B+

2 B+
4 C+

2 C+
4 A−1 A−3 B−1 B−3 C−1

pitch phase winding represented in Table 4 can be viewed as two single-layer

full-pitch windings shifted with respect to one another by the angle (1−β)π

and connected in series. Indeed, for phase a, these two full-pitch windings

are formed by conductors A+
1 -A−2 , A+

3 -A−4 in the top layer and by conduc-

tors A+
2 -A−1 , A+

4 -A−3 in the bottom layer. This equivalent representation of

the two-layer fractional-pitch winding as two (top and bottom) full-pitch

windings shifted by angle (1−β)π is legitimate because all winding coils are

connected in series. It is also apparent that half-wave symmetry holds for

any full-pitch winding and, consequently, for the fractional-pitch winding

designed as shown in Occupancy Table 4 there is no generation of even har-

monics in the mmf, while some odd mmf harmonics can be suppressed by

using the fractional pitch (as discussed somewhat later). It is worthwhile

to note that the fractional-pitch design of stator windings is also beneficial

for suppression of higher-order time harmonics in induced internal voltage

(emf). These time harmonics appear because the distribution of rotor mag-

netic field deviates from the sinusoidal case. Thus, it can be concluded that

three-phase stator windings are designed as filters of higher-order spatial

and temporal harmonics.

The design of stator windings has been discussed above for the case of

two-pole machines. When the number of poles is larger than two, the pat-

tern of the winding is periodically repeated along the stator circumference.

This results in ν identical groups of coils which can be connected in series

or parallel.

Next, we proceed to the calculation of reactances of stator windings. For

this purpose, we shall recall that the magnetic flux which links a filamentary

conductor L (see Figure 4.9) can be computed by using Stokes’ theorem

and magnetic vector potential. Namely,

Φ =

∫∫
S

B · ds =

∫∫
S

curl A · ds =

∮
L

A · d`. (4.72)

Thus, the flux Φk which links one turn of the coil number k can be computed
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Fig. 4.9

as follows:

Φk =

∮
Lk

A · d` =

∫
`k

A · d` +

∫
`′k

A · d` +

∫
end

parts

A · d`, (4.73)

where `k and `′k are direct and reverse active parts of the coil (see Figure

4.7). In our calculations below, we shall neglect the last integral (over “end

parts”) in formula (4.73), while the integrals over `k and `′k can be simplified

by assuming that A has only z-components and, consequently, is parallel

and anti-parallel to d` for `k and `′k, respectively. Furthermore, it will be

assumed that `k and `′k are active parts of full-pitch top (or bottom) coils

in the equivalent representation of double-layer fractional-pitch winding

discussed above. This yields the expression

Φ
(top)
k ≈ ` [A(θk, t)−A (θ′k, t)] , (4.74)

where ` is the length of the active parts, which is the same as the stator

length, while superscript “(top)” denotes that the flux is computed for a

top full-pitch coil.

Next, we shall use the expression (4.69) for A that was derived for the

ideal machine. It is understandable and in agreement with the previous

discussion that Fm in this expression can be construed as the peak value of

the fundamental harmonic of mmf of the actual (“discrete”) stator phase

winding. For the sake of simplicity of derivations, we consider the case of

the two-pole machine when ν = 1. Now, by substituting formula (4.69)

into equation (4.74), we obtain

Φ
(top)
k (t) =

3µ0b`

2δ
Fm [sin(ωt− θk)− sin (ωt− θ′k)] . (4.75)

In the case of full-pitch coils when formula (4.70) is valid, the last formula

can be simplified as follows:

Φ
(top)
k (t) =

3µ0b`

δ
Fm sin(ωt− θk). (4.76)
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It is apparent from the last formula that fluxes linking different coils have

the same peak value but different initial phases. The latter is the manifes-

tation of the distributed nature of the winding. Similarly, for the bottom

full-pitch coils, shifted with respect to the top full-pitch coils by the angle

(1− β)π, we can write

Φ
(bot)
k (t) =

3µ0b`

δ
Fm sin [ωt− θk + (1− β)π] . (4.77)

The total flux linkages ψ(t) of the phase winding can be computed as

follows:

ψ(t) = Nc

q∑
k=1

[
Φ

(top)
k (t) + Φ

(bot)
k (t)

]
, (4.78)

where Nc is the number of turns of each coil, while q is the number of

full-pitch coils in the top (or bottom) layer.

By substituting formulas (4.75) and (4.77) into equation (4.78), we find

ψ(t) =
3µ0b`N

2δq
Fm

q∑
k=1

{sin(ωt− θk) + sin [ωt− θk + (1− β)π]} , (4.79)

where

N = 2qNc (4.80)

is the total number of turns in the phase winding.

Formula (4.79) can be written in the phasor form as

ψ̂ = −j 3µ0b`N

2δq
Fm

q∑
k=1

(
e−jθk + e−jθkej(1−β)π

)
, (4.81)

which can be further transformed as follows:

ψ̂ = −j 3µ0b`N

2δq
Fm
(
1− e−jβπ

) q∑
k=1

e−jθk . (4.82)

Next, we can write that

θk = θ1 + (k − 1)α, (4.83)

where

α = θk − θk−1 (4.84)

is the polar angle increment between two adjacent slots.

By using formula (4.83), we find
q∑

k=1

e−jθk = e−jθ1
q∑

k=1

e−j(k−1)α. (4.85)
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The sum in the right-hand side of the last formula can be recognized as the

finite geometric series with the ratio e−jα. Consequently, the last formula

can be further transformed as follows:
q∑

k=1

e−jθk = e−jθ1
1− e−jqα

1− e−jα
. (4.86)

By substituting formula (4.86) into formula (4.82), we find

ψ̂ = −j 3µ0b`N

2δq
Fme

−jθ1
(
1− e−jβπ

) 1− e−jqα

1− e−jα
. (4.87)

Consequently,

ψm =
3µ0b`N

2δq
Fm
∣∣1− e−jβπ∣∣ ∣∣1− e−jqα∣∣

|1− e−jα|
. (4.88)

Next, we shall use the formula∣∣1− e−jx∣∣ = 2 sin
x

2
, (4.89)

assuming that 0 < x < π. The latter formula is derived as follows:

1− e−jx = 1− cosx+ j sinx = 2 sin2 x

2
+ j2 sin

x

2
cos

x

2
. (4.90)

This implies that

1− e−jx = 2 sin
x

2

[
sin

x

2
+ j cos

x

2

]
, (4.91)

which leads to formula (4.89).

By using equality (4.89), formula (4.88) can be written as follows:

ψm =
3µ0b`N

δ
Fm sin

βπ

2

sin qα
2

q sin α
2

. (4.92)

Now, we shall introduce two very important coefficients (factors): the pitch

coefficient

kp = sin
βπ

2
, (4.93)

and the distribution (or breadth) coefficient

kd =
sin qα

2

q sin α
2

. (4.94)

These two coefficients are usually combined into one winding coefficient

kw = kpkd. (4.95)
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By using the last three formulas, equation (4.92) can be written in the form

ψm =
3µ0b�Nkw

δ
Fm. (4.96)

This implies that the peak value of the voltage induced by flux linkages

ψ(t) can be computed as

Vm = ωψm =
3µ0b�Nkw

δ
ωFm. (4.97)

Next, we shall compute Fm in terms of peak value Im of the phase

winding current. To this end, we shall first consider the mmf F
(top)
k (θ) of

the filamentary full-pitch coil number k in the top layer at the moment of

time when the current in the phase winding achieves its maximum value.

This mmf is represented in Figure 4.10. The Fourier coefficients for the

first-order terms of the Fourier expansion of F
(top)
k (θ) can be computed by

using the formulas

a
(k)
1 =

1

π

∫ 2π+θk

θk

F
(top)
k (θ) cos θdθ, (4.98)

b
(k)
1 =

1

π

∫ 2π+θk

θk

F
(top)
k (θ) sin θdθ. (4.99)

After integration, we find

a
(k)
1 = −2NcIm

π
sin θk, (4.100)

b
(k)
1 =

2NcIm
π

cos θk, (4.101)
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where, as before, Nc is the number of turns of the coil. Thus, the funda-

mental harmonic F
(top)
k1 of the coil mmf can be found as follows:

F
(top)
k1 (θ) = a

(k)
1 cos θ + b

(k)
1 sin θ

=
2NcIm
π

[− cos θ sin θk + sin θ cos θk] . (4.102)

After simple trigonometric transformations, we derive

F
(top)
k1 (θ) =

2NcIm
π

sin(θ − θk). (4.103)

Since the full-pitch coils of the bottom layer are shifted by the angle (1−β)π,

we find

F
(bot)
k1 (θ) =

2NcIm
π

sin [θ − θk + (1− β)π] . (4.104)

Now, the fundamental harmonic of the phase winding mmf can be computed

as follows:

F1(θ) =

q∑
k=1

[
F

(top)
k1 (θ) + F

(bot)
k1 (θ)

]
. (4.105)

From formulas (4.103), (4.104) and (4.105), we find

F1(θ) =
NIm
πq

q∑
k=1

{sin(θ − θk) + sin[θ − θk + (1− β)π]} , (4.106)

where N is given by formula (4.80).

It can be observed that the mathematical form of the sum in formula

(4.106) is similar to the mathematical form of the sum in formula (4.79);

they become formally identical if ωt is replaced by θ. This means that

by literally repeating the same line of reasoning used in the derivation of

formula (4.96) for ψm, we can derive the following expression for the peak

value Fm of F1(θ):

Fm =
2Nkw
π

Im. (4.107)

By substituting the last formula into equation (4.97), we obtain

Vm =
12µ0b`

δ
fN2k2

wIm. (4.108)

The last formula implies the validity of the following expression for the

main reactance X
(m)
s of the stator phase winding:

X(m)
s =

12µ0b`

δ
fN2k2

w. (4.109)
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This reactance is termed “main” reactance (and marked by the superscript

“(m)”) in order to emphasize that this is not the total reactance of the

stator phase winding but rather its main part. Indeed, in the derivation

of expression (4.109), the formula (4.69) was used. The latter formula was

derived for the ideal machine by neglecting end parts of the stator winding

as well as slots on the stator and rotor and by assuming that the armature

reaction magnetic field has only the fundamental spatial harmonic. For

this reason, the actual stator winding reactance is somewhat different from

X
(m)
s and can be represented as follows:

Xs = X(m)
s +X`

s , (4.110)

where X`
s is the so-called leakage reactance that accounts for end-part leak-

age, slot leakage and differential leakage associated with higher-order spatial

harmonics of magnetic field.

Another very important point is that formula (4.109) has been derived

by using the expression for vector potential A of the rotating magnetic field,

i.e., magnetic field created by three currents in three stator phase windings.

In this sense, reactance Xs accounts for self and mutual reactances of the

three stator phase windings. It is interesting to find the relation between

Xs and self and mutual reactances. To do this, consider the KVL equation

for phase a:

V̂a = jXaaÎa + jXabÎb + jXacÎc, (4.111)

where Xaa is the self-reactance, while Xab and Xac are mutual reactances.

It is apparent that due to the symmetry of the three-phase stator winding

under rotation by 120◦, we have

Xab = Xac. (4.112)

Furthermore, in the case of a balanced load,

Îb = Îae
−j 2π

3 , Îc = Îae
−j 4π

3 . (4.113)

By using formulas (4.112) and (4.113), we easily derive that

V̂a = j(Xaa −Xab)Îa. (4.114)

The latter implies that

Vm = (Xaa −Xab)Im, (4.115)

which means that

Xs = Xaa −Xab. (4.116)
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Thus, in the case of balanced load, self and mutual reactances can be ac-

counted for by one reactance Xs, which is quite often called synchronous

reactance.

Now, we shall briefly return to the discussion of higher-order spatial

harmonics of the stator winding. As was mentioned before, even spatial

harmonics are absent due to the half-wave symmetry of the stator winding

mmf. Next, we illustrate that all “multiple of three” higher-order harmonics

are equal to zero as well. The illustration is based on the fact that for a

full-pitch coil number k of phase a the η-th harmonic of its mmf at time t

is given by the formula

F akη(θ, t) =
2Ncia(t)

πη
sin(ηθ − ηθk). (4.117)

The derivation of the last relation is similar to the derivation of formula

(4.103) and it takes into account that η is an odd number. Since the coils

number k of phases a, b and c are shifted with respect to one another by
2π
3 , we find

F bkη(θ, t) =
2Ncib(t)

πη
sin

[
ηθ − η

(
θk −

2π

3

)]
, (4.118)

F ckη(θ, t) =
2Ncic(t)

πη
sin

[
ηθ − η

(
θk −

4π

3

)]
. (4.119)

Now, by taking into account that η is a multiple of three and that for a

balanced load

ia(t) + ib(t) + ic(t) = 0, (4.120)

we conclude that

F akη(θ, t) + F bkη(θ, t) + F ckη(θ, t) = 0. (4.121)

The latter implies that there are no multiple of three spatial harmonics in

the mmf of the three-phase winding in the case of balanced load. The fifth

and seventh harmonics can be suppressed by using fractional-pitch winding

design. Indeed, it can be shown that for η-th spatial harmonics equation

(4.107) has the form

Fηm =
2Nkwη
πη

Im, (4.122)

where

kwη = kpηkdη (4.123)
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and

kpη = sin
ηβπ

2
. (4.124)

For the fractional pitch β = 5/6, we find

kp5 = sin
25π

12
= sin

π

12
≈ 0.26, (4.125)

kp7 = sin
35π

12
= sin

π

12
≈ 0.26, (4.126)

while kp = kp1 = sin 5π
12 ≈ 0.97. Thus, the fifth and seventh spatial harmon-

ics are equally suppressed by the small values of kp5 and kp7 in comparison

with kp1. Additional suppression occurs due to the appearance of η in the

denominator of formula (4.122).

Next, we shall discuss the equivalent circuit of the synchronous genera-

tor in the case of balanced load. By using per-phase analysis, this equivalent

circuit can be represented as shown in Figure 4.11, where Rs stands for the

phase resistance of the stator winding. This equivalent circuit is convenient

for the analysis of terminal voltage of a synchronous generator supplying

an isolated system characterized by load impedance ZL.

From the equivalent circuit shown in Figure 4.11, we find

Ês = RsÎs + jXsÎs + V̂s, (4.127)

which leads to

V̂s = Ês −RsÎs − jXsÎs. (4.128)

Usually,

Rs � Xs (4.129)

and

Xs ' X(m)
s . (4.130)
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Fig. 4.12

Consequently,

V̂s ≈ Ês − jX(m)
s Îs. (4.131)

It follows from the last formula that the smaller X
(m)
s , the less the terminal

voltage V̂s is sensitive to the variation of load current Îs. The smallness of

X
(m)
s can be achieved according to formula (4.109) by increasing the length

δ of the air gap. The case of a synchronous generator supplying an isolated

load is not typical for utility power systems where usually a large number

of synchronous generators are connected to the same power network. In

the latter case, the terminal voltage of a single generator and its frequency

are by and large fixed by the presence of other generators in the network.

This situation is usually described as a synchronous generator connected

to an infinite bus, and it is discussed in the next section. Nevertheless, the

smallness of X
(m)
s that can be achieved for large δ is still very important

from the point of view of static stability of the synchronous generator. This

issue is also discussed in the next section.

We shall conclude this section by discussing how the synchronous reac-

tance Xs can be determined experimentally. This is usually done by per-

forming two tests, the open-circuit test and short-circuit test. Remarkably,

these tests can be performed without connecting a synchronous generator to

an outside power network but rather only using the available dc excitation

of its rotor winding. The schematics of the open-circuit test are presented

in Figure 4.12. It is apparent from this figure that by measuring the peak

value of open-circuit voltage V ocm we find the peak value Esm of the internal

voltage (emf) for a fixed level of rotor winding excitation:

Esm = V ocm . (4.132)

The schematics of the short-circuit test are presented in Figure 4.13. By

measuring the peak value of the short-circuit current Iscm for the same level

of rotor winding excitation, according to formula (4.132) and Figure 4.13,
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the synchronous reactance Xs can be found by using the formula

Xs =
V ocm
Iscm

. (4.133)

It is evident that by using the last formula we neglect the phase resistance

Rs of the stator winding, which is usually very small in comparison with

Xs.

4.4 Two-Reactance Theory for Salient Pole Synchronous

Generators; Power of Synchronous Generators

In the previous section, we have discussed the design of stator windings and

derived the formula (4.109) for their reactance. This derivation has been

carried out for cylindrical rotor machines whose air gaps are mostly uniform.

In the case of salient pole machines, the air gaps are strongly nonuniform;

they assume the smallest values δd along the direct axes and the largest

values δq along the quadrature axes. For this reason, it is not clear what

value of δ can be used in the formula (4.109) or even if this formula is

still applicable to salient pole synchronous machines. It is clear that the

value of δ depends on the spatial orientation of armature reaction magnetic

field with respect to the salient pole rotor. In other words, it is clear that

different values of δ must be used when magnetic field lines of armature

reaction field are mostly aligned along the direct axis than when these field

lines are aligned along the quadrature axis. Here, an interesting physical

phenomenon occurs. It turns out that the spatial orientation of armature

reaction magnetic field with respect to a salient pole rotor is controlled by

the phase shift in time between internal voltage (induced emf) Ês and stator

current Îs. To illustrate this, consider two particular cases when a) Ês and

Îs are in phase and b) Îs lags behind Ês by π
2 . For the sake of simplicity

of our reasoning, we consider a two-pole machine and represent the stator
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Fig. 4.14

phase windings by single coils AX, BY and CZ shifted in space by 120◦

(see Figure 4.14a). Magnetic field of the rotor is shown in Figure 4.14b.

We start with the case a) which is illustrated by the phasor diagram

in Figure 4.15a. We shall also consider a special instant of time when the

position of the rotor is such that its direct axis is in the plane of the AX

coil (see Figure 4.15b). We shall use this instant of time as the initial time

instant t = 0. It is clear from the structure of the magnetic field lines of

the rotor shown in Figure 4.14b that at this time instant the flux linkage

of the coil AX is equal to zero. Since flux linkage is sinusoidal in time, its

derivative achieves its maximum at the time instant when the flux linkage

is equal to zero. Consequently, the internal voltage induced in the coil AX

assumes its maximum value at t = 0. Since the current in this coil is in

phase with the induced internal voltage (see the phasor diagram in Figure

4.15a), this current also assumes its maximum positive value at t = 0. This

means that this current can be written as

ia(t) = Im cosωt. (4.134)

Since we deal with the case of balanced load, currents in coils BY and CZ
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are given by the formulas

ib(t) = Im cos

(
ωt− 2π

3

)
, (4.135)

ic(t) = Im cos

(
ωt− 4π

3

)
. (4.136)

At time instant t = 0, from the last three formulas we find

ia(0) = Im > 0, ib(0) = ic(0) = −Im
2
< 0. (4.137)

These current signs are marked in Figure 4.16, and it is clear that due to

the symmetry of the current distribution the lines of magnetic field cre-

ated by these currents are directed along the quadrature axis. This fact is

established for the time instant t = 0, that is, for a very specific position

of the rotor. However, since the rotor and the armature reaction magnetic

field rotate in synchronism (i.e., with the same speed), it can be concluded

that the lines of the armature reaction magnetic field are directed along the

quadrature axis at any instant of time, i.e., for any position of the rotor.

This suggests that δq can be used instead of δ in formula (4.109) and this

leads to the reactance

X(m)
sq =

12µ0b`

δq
fN2k2

w, (4.138)
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Fig. 4.16

Fig. 4.17

which can be called quadrature axis main reactance.

Now, we turn to the discussion of the case b) when the stator current in

each phase winding lags behind induced internal voltage by π
2 as illustrated

by the phasor diagram shown in Figure 4.17a. We shall also consider a

special instant of time when the position of the rotor is such that its direct

axis is normal to the plane of the AX coil (see Figure 4.17b). We shall
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use this instant of time as the time instant t = 0. It is clear from the

structure of magnetic field lines of the rotor (see Figure 4.14b) that at this

time instant the flux linkage of the coil AX achieves its maximum value.

This implies that the time derivative of this flux linkage is equal to zero.

The latter indicates that the internal voltage induced by the rotor magnetic

field in the coil AX is equal to zero at t = 0. Since the current in this coil

lags behind the induced internal voltage by π
2 (see the phasor diagram in

Figure 4.17a), we conclude that this current achieves its maximum positive

value at t = 0. This means that this current can be written as

ia(t) = Im cosωt. (4.139)

Since we deal with the case of balanced load, currents in coils BY and CZ

are described by the formulas

ib(t) = Im cos

(
ωt− 2π

3

)
, (4.140)

ic(t) = Im cos

(
ωt− 4π

3

)
. (4.141)

From the last three formulas we find that at time instant t = 0 we have

ia(0) = Im > 0, ib(0) = ic(0) = −Im
2
< 0. (4.142)

These current signs are marked in Figure 4.18, and it is clear that due to the

symmetry of the current distribution the lines of magnetic field created by

these currents are along the direct axis of the rotor. This fact is established

for the time instant t = 0, that is, for a very specific position of the rotor.
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However, since the rotor and the armature reaction magnetic field rotate in

synchronism (i.e., with the same speed), it can be concluded that the lines of

the armature reaction magnetic field are along the direct axis at any instant

of time, i.e., for any position of the rotor. This suggests that δd can be

used instead of δ in formula (4.109) and this leads to the reactance

X
(m)
sd =

12µ0b`

δd
fN2k2

w, (4.143)

which can be termed the direct axis main reactance.

Now, consider a general case when the phase shift in time between the in-

duced internal voltage and stator current is equal to some angle 0 ≤ ψ ≤ π
2

(see Figure 4.19a). It is clear that in this general case the positive maxi-

mum value of current ia(t) will be achieved at some position of the rotor

(see Figure 4.19b) which is intermediate between the rotor positions shown

in Figures 4.16 and 4.18. It is also clear that this rotor position depends on

the phase shift ψ between Ês and Îs. Thus, the conclusion can be reached

that the orientation of field lines of the armature reaction magnetic field

with respect to the salient pole rotor is controlled by ψ, and different syn-

chronous reactances X
(m)
sψ should be used for different phase shifts ψ. The

phase shift ψ does not remain constant but changes with load variations.

This clearly suggests that for salient pole machines the stator windings
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cannot be characterized by one reactance as in the case of cylindrical ro-

tor machines. Luckily, the stator windings of salient pole machines can

be characterized by two reactances: direct axis and quadrature axis reac-

tances. This characterization is based on the superposition principle and

the following decomposition of stator current Îs:

Îs = Îsq + Îsd, (4.144)

which is illustrated by the phasor diagram shown in Figure 4.20. It is clear

from the previous discussion that the current Îsq will produce the magnetic

field whose lines are directed along the quadrature axis, while the current

Îsd will produce the magnetic field whose lines are along the direct axis. The

actual magnetic field is the superposition of these two magnetic fields. This

implies that the flux linkage of the stator windings ψ̂s can be represented

as the sum of two flux linkages

ψ̂s = ψ̂sq + ψ̂sd, (4.145)

which are due to the magnetic fields created by currents Îsq and Îsd, re-

spectively.

From the last formula we find that the KVL equation for a stator phase

winding can be written in the form

Ês = V̂sq + V̂sd + V̂s, (4.146)

where V̂sq is the voltage induced due to the time variations of flux linkage

created by the component of the armature reaction magnetic field whose
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lines are directed along the quadrature axis, while V̂sd is the voltage induced

due to the time variations of flux linkage of the stator winding created by

the component of the armature reaction magnetic field whose lines are along

the direct axis. Consequently, these two voltages can be written as

V̂sq = jXsq Îsq, (4.147)

V̂sd = jXsdÎsd, (4.148)

where reactances Xsq and Xsd include not only the main reactances (see

formulas (4.138) and (4.143)) but leakage reactances as well.

By substituting formulas (4.147) and (4.148) into equation (4.146), we

end up with the following expression for the terminal voltage V̂s:

V̂s = Ês − jXsdÎsd − jXsq Îsq. (4.149)

The last formula is illustrated by the phasor diagram shown in Figure 4.21.

This phasor diagram as well as equation (4.149) is the essence of the two-

reactance theory that was first developed by A. Blondel.

It must be remarked that the two-reactance theory is only applicable

under steady-state conditions and balanced loads. In the case of transients,

this theory is not applicable and one is resigned to use coupled circuit

equations which account for coupling between stator phase windings and

rotor dc and damper windings. These are quite complicated equations with
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variable-in-time coefficients. The latter is the consequence of the fact that

inductances and mutual inductances of windings depend on the temporal

position of the salient pole rotor. It turns out that by using special Park

transformations associated with rotating direct and quadrature axes of the

rotor these coupled equations with variable coefficients can be reduced to

differential equations with constant coefficients. The detailed discussion of

the Park theory is beyond the scope of this book.

Now, we shall proceed to the discussion of electric power generated by

the synchronous generator. In the case of balanced load, this power can be

written as

P =
3

2
VsmIsm cosϕ, (4.150)

and if we use rms values Vs and Is instead of peak values Vsm and Ism,

then

P = 3VsIs cosϕ. (4.151)

It is clear from Figure 4.21 that

cosϕ = cos(ψ − θ) = cosψ cos θ + sinψ sin θ. (4.152)

By substituting the last formula into equation (4.151), we arrive at

P = 3VsIs cosψ cos θ + 3VsIs sinψ sin θ. (4.153)

It is apparent from Figure 4.21 that

Is cosψ = Isq, (4.154)

Is sinψ = Isd. (4.155)

By substituting the last two equations into formula (4.153), we find

P = 3VsIsq cos θ + 3VsIsd sin θ. (4.156)

From the phasor diagram in Figure 4.21 we derive

Es = XsdIsd + Vs cos θ, (4.157)

which leads to

Isd =
Es − Vs cos θ

Xsd
. (4.158)

Similarly, from the same phasor diagram we find

XsqIsq = Vs sin θ, (4.159)



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 268

268 Fundamentals of Electric Power Engineering

which results in

Isq =
Vs sin θ

Xsq
. (4.160)

By inserting formulas (4.158) and (4.160) into equation (4.156), we obtain

P =
3V 2

s

Xsq
sin θ cos θ +

3Vs(Es − Vs cos θ)

Xsd
sin θ, (4.161)

which leads to

P =
3EsVs
Xsd

sin θ + 3V 2
s

(
1

Xsq
− 1

Xsd

)
sin θ cos θ. (4.162)

Finally, taking into account that

sin θ cos θ =
1

2
sin 2θ, (4.163)

we arrive at

P =
3EsVs
Xsd

sin θ +
3V 2

s

2

(
1

Xsq
− 1

Xsd

)
sin 2θ. (4.164)

The last formula has two distinct terms. The first term contains the in-

ternal voltage Es induced by the rotating magnetic field of the rotor. The

second term does not contain Es and appears due to the saliency of the

rotor, that is, due to the difference in magnetic reluctance along the direct

and quadrature axes. For this reason, this second term is sometimes called

reluctance power. Usually, this reluctance power has a value of about 20%

to 25% of the total (rated) power of the synchronous machine. This sec-

ond (“reluctance”) term in the expression of the power is quite interesting

from the physical point of view because it reveals that the electric power

can be generated without dc excitation of the rotor but solely due to its

saliency. However, due to the relative smallness of this “reluctance power,”

this possibility of power generation without rotor excitation is practically

not utilized in conventional power systems.

In the case of cylindrical rotor turbine generators we have

Xsd = Xsq = Xs (4.165)

and formula (4.164) is reduced to

P =
3EsVs
Xs

sin θ. (4.166)

The last formula can also be written as

P (θ) = Pm sin θ, (4.167)
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where

Pm =
3EsVs
Xs

. (4.168)

A plot of P (θ) defined by formula (4.167) is presented in Figure 4.22a. It

is apparent from this figure that a supplied load power P` is delivered at

some angle θ` which is called “load” or “power” angle. It is also clear from

the same figure that P (θ) is equal to P` at the angle θ∗` . However, the

performance of the synchronous generator is unstable at this angle. This is

discussed in the last section of the next chapter, where it is demonstrated

that θ∗` corresponds to the saddle point of synchronous machine dynamics.

It is interesting to discuss the geometric (or mechanical) meaning of

load angle θ. According to the phasor diagram shown in Figure 4.21, θ is

the phase shift in time between Ês and V̂s. Ês is induced by the rotating

magnetic field of the rotor, while V̂s is induced by the total rotating field in

the gap of the synchronous generator (as before, we neglect here the small

resistance of the stator winding). This total field is the superposition of

the rotating magnetic field of the rotor and the rotating armature reaction

magnetic field. As a result of this superposition, the axes of these two fields

do not coincide. In other words, these two magnetic fields move in synchro-

nism, however the total magnetic field lags behind the rotor magnetic field

by some angle. It is clear that this angle is equal to θ, that is, to the time

phase shift between Ês and V̂s induced by these fields. The axis of the

rotor magnetic field coincides with the rotor axis. For this reason, it can

be stated that the axis of the total rotating magnetic field lags behind the

rotor axis by angle θ.
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Formula (4.167) has been derived under the tacit assumption of syn-

chronous steady-state balanced load operation of the synchronous genera-

tor. For this reason, Pm can be interpreted as the maximum of power that

can be generated by the synchronous generator without losing synchronism.

In other words, if a synchronous generator is loaded above Pm, the synchro-

nism between the mechanical speed of the rotor and the armature reaction

magnetic field will be broken. As a result, large eddy currents may be

induced in the conducting solid rotor, which may result in large heat dissi-

pation and eventual damage of the synchronous generator. Thus, Pm can

be considered as a limit of static stability. The larger this limit, the better

the quality of the synchronous machine. It is clear from formula (4.168)

that for fixed Es and Vs, larger Pm can be achieved by making Xs smaller.

Since Xs ≈ X
(m)
s and X

(m)
s according to formula (4.109) can be reduced

by increasing the air gap length δ, it can be concluded that the larger the

air gap, the better the quality of the synchronous generator. This explains

why synchronous generators, especially two-pole turbine generators, have

large air gaps which may approach 15 cm.

A plot of P given by formula (4.164) is shown in Figure 4.22b. It

is apparent that this plot is somewhat similar in the qualitative sense to

the plot shown in Figure 4.22a for a cylindrical rotor machine. The main

difference is that due to the second (saliency) term in equation (4.164) the

maximum power Pm is achieved at the load angle θmax which is less than
π
2 .

In the conclusion of this chapter, we shall briefly discuss the performance

of a synchronous generator connected to an infinite bus. The latter means

that a synchronous generator is connected to a power network with a large

number of other synchronous generators whose overall delivered power is

much above the power of the single generator. Under these conditions, the

terminal voltage of a single generator and its frequency are by and large

fixed by the presence of other generators in the power network:

Vs = const, f = const. (4.169)

We shall also consider the situation when the active power delivered by a

generator is also fixed,

P = const, (4.170)

and we are interested what can be achieved under these circumstances by

varying the rotor excitation current if of the generator. We shall limit

our discussion to the case of cylindrical rotor machines, although it can be

extended to the case of salient pole rotor machines as well.
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From constraints (4.169) and (4.170) and formulas (4.151) and (4.166)

immediately follows that during the variations of rotor excitation current

if the following two quantities are conserved:

Is cosφ = const, (4.171)

Es sin θ = const. (4.172)

These two conservation equations can be geometrically interpreted as fol-

lows: the end of the phasor Îs moves along the line AB, while the end of

the phasor Ês moves along the line CD as the excitation current if is varied

(see Figure 4.23). In this figure, the phasor diagrams of the equation

Ês = V̂s + jXsÎs (4.173)

are presented for three distinct cases: a) when ϕ = 0, b) ϕ > 0, i.e., Îs lags

behind V̂s and c) ϕ < 0, i.e., Îs leads V̂s. These phasor diagrams reveal

that Is achieves its minimum value for ϕ = 0 and cosϕ = 1. Is is increased

as ϕ > 0 is increased and this results in increase of Es, which can only

be achieved by increasing if . Furthermore, Is is increased as ϕ < 0 and

the magnitude of ϕ is increased. This results in decrease of Es, which can
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Fig. 4.24

only be achieved by decreasing if . This discussion implies that the relation

between Is and if is represented by a V-type curve k shown in Figure 4.24

for some fixed value of active power Pk. As the value of the power is

changed, this results in the change of the positions of lines AB and CD in

Figure 4.23; this yields different V-type curves. The line that goes through

the minima of the V-curves is the line of cosϕ = 1. This line divides the

Is-if plane into two parts with leading power factors and lagging power

factors, respectively. A decrease in if results in a decrease of Es and Pm
(see formula (4.168)), which eventually results in loss of synchronism when

Pm < Pk. This occurs along the line MN .

It is immediately evident from the V-curves shown in Figure 4.24 that

by varying the excitation current if the power factor of the synchronous

generator and its reactive power can be controlled. The achieving of lead-

ing power factor is especially intriguing. However, this possibility is limited

only to very small angles ϕ because it is associated with reduction of Es
and Pm, which is detrimental to the stability of the synchronous generator.

Nevertheless, this possibility to generate reactive power with leading power

factor can be realized if a synchronous machine is used as a motor with

practically no mechanical load. It can be shown that for a synchronous

motor the regions of lagging cosϕ and leading cosϕ are switched. For this

reason, an appreciable reactive power with leading power factor can be

generated by increasing excitation current if . In this case, a synchronous
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machine is operated as a synchronous condenser which can be used in-

stead of capacitor banks for adjustment of power factor in power systems.

The main advantage of such condensers over capacitor banks is that their

reactive power can be continuously controlled through the variation of ex-

citation current if , that is, without any switching as required in the case

of capacitor banks.
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Chapter 5

Power Flow Analysis and Stability of
Power Systems

5.1 Power Flow Analysis

In this section, the power flow analysis in power systems is discussed. This

analysis provides voltage profiles in power systems. Namely, it leads to

the determination of voltage at load terminals at various operational con-

ditions. The knowledge of voltage profiles is very important because the

delivering of electric power at voltages with more or less constant peak

(or rms) values despite continuously changing loads is one of the main chal-

lenges and obligations in operating power systems. The power flow analysis

is also very important for contingency studies of cases when, for instance,

one or more generators may go off-line due to some accidents and this may

affect voltage profiles and also may result in overloading of the generating

units remaining in operation. Finally, the power flow analysis is very useful

for the planning of future developments and extensions of existing power

systems. For the reasons presented above, the power flow analysis is one of

the most common computer calculations routinely performed in operation

of power systems.

As it is usually done, the power flow analysis is discussed below on the

transmission level when it is assumed that different generators and bulk

loads are interconnected by transmission lines. However, the technique of

power flow analysis presented here is applicable to different levels (layers)

of power systems as well. In particular, it can be used for the analysis

of “subtransmission” systems used for distribution and further dispersal of

electric power to actual loads.

Conceptually, power flow analysis is the nodal analysis of electric net-

works formulated in terms of nodal electric powers. For this reason, the

power flow equations are strongly nonlinear even if the underlying nodal

275
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potential equations are linear. According to the terminology used in power

systems, nodes of a power network are called “buses.” We shall be con-

cerned with three-phase balanced load operation of power systems when

per-phase analysis can be used. In per-phase analysis, three-phase loads

as well as three-phase generators can be represented by single buses. Each

bus can be fully characterized by four quantities, i.e., active power, reactive

power, peak value of the voltage and its initial phase:

Pk, Qk, Vmk, ϕk, (k = 1, 2, ..., N), (5.1)

where N is the total number of buses. It is tacitly assumed that voltages

Vmk are specified with respect to the common neutral which is regarded as

the reference node (bus).

It turns out that all buses can be divided into two groups:

(1) Generator buses where

Pk and Vmk, (k = 1, 2, ..., G), (5.2)

are specified. This specification is consistent with the interpreta-

tion of synchronous generators as (P, V ) sources as discussed in

the previous chapter (see section 4.1). In a typical power system,

generator buses are about 15% of the total number of buses.

(2) Load buses where

Pk and Qk, (k = G+ 1, G+ 2, ..., N), (5.3)

are specified.

Besides generator and load buses, it is very convenient in practice to

introduce the so-called “slack bus.” This is a special generator bus used to

enforce the balance between demanded power by all loads and the overall

power delivered by all synchronous generators. In our subsequent discus-

sion, we shall ignore this technical detail and for the sake of conceptual

simplicity deal with generator and load buses characterized by formulas

(5.2) and (5.3), respectively.

Now, the problem of power flow analysis can be stated as follows: given

the quantities specified in formulas (5.2) and (5.3), find

Qk and ϕk, (k = 1, 2, ..., G), (5.4)

for generator buses and

Vmk and ϕk, (k = G+ 1, G+ 2, ..., N), (5.5)

for load buses.
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To solve the stated problem, power flow equations will be derived. The

derivation is based on the nodal analysis. The first step of the derivation

is to write KCL for each bus:

Îk =
N∑
n=1

Îkn, (k = 1, 2, ..., N), (5.6)

where Îk is the phasor of the current from the bus number k to the neutral,

while Îkn is the phasor of the current between buses number k and n.

According to the nodal analysis, currents Îkn can be expressed in terms

of branch admittances and bus (nodal) voltages V̂n. This leads to the

following formulas:

Îk =
N∑
n=1

YknV̂n, (k = 1, 2, ..., N). (5.7)

It is convenient to represent these formulas in the matrix form
Î1
Î2
...

ÎN

 =


Y11 Y12 · · · Y1N

Y21 Y22 · · · Y2N

...
...

. . .
...

YN1 YN2 · · · YNN



V̂1

V̂2

...

V̂N

 . (5.8)

The following expressions are valid for the elements of the admittance ma-

trix in (5.8):

Ykk =
∑
i

Yi, (5.9)

where the sum is taken over all admittances connected to the bus number

k, while

Ykn = −
∑
i

Yi, (5.10)

where the sum is taken over all admittances connected between buses num-

ber k and n. These expressions are usually derived in the discussion of

nodal analysis (see [35]).

Since not all buses are interconnected with one another, this implies

in accordance with formula (5.10) that many off-diagonal elements of the

admittance matrix in equation (5.8) are equal to zero. In other words, this

admittance matrix is usually quite sparse.

The further derivation of power flow equations proceeds as follows. The

complex power Ŝk at each bus can be written in the form

Ŝk =
1

2
V̂k Î
∗
k , (k = 1, 2, ..., N). (5.11)
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According to formulas (5.7), we find

Î∗k =
N∑
n=1

Y ∗knV̂
∗
n , (k = 1, 2, ..., N). (5.12)

By substituting the last formulas into equations (5.11), we get

Ŝk =
1

2
V̂k

N∑
n=1

Y ∗knV̂
∗
n , (k = 1, 2, ..., N), (5.13)

which is equivalent to

Ŝk =
1

2

N∑
n=1

V̂kV̂
∗
n Y
∗
kn, (k = 1, 2, ..., N). (5.14)

Equations (5.14) are written for complex quantities. We shall next trans-

form them into equations for real quantities Pk, Qk, Vmk and ϕk. To this

end, we shall first recall that

V̂k = Vmke
jϕk , (5.15)

V̂ ∗n = Vmne
−jϕn . (5.16)

Consequently,

V̂kV̂
∗
n = VmkVmne

j(ϕk−ϕn), (5.17)

which is tantamount to

V̂kV̂
∗
n = VmkVmn [cos(ϕk − ϕn) + j sin(ϕk − ϕn)] . (5.18)

Furthermore,

Ykn = Gkn + jBkn, (5.19)

where Gkn are conductances, while Bkn are susceptances.

Formula (5.19) implies that

Y ∗kn = Gkn − jBkn. (5.20)

Finally,

Ŝk = Pk + jQk, (k = 1, 2, ..., N). (5.21)

Now, by substituting formulas (5.18), (5.20) and (5.21) into equations

(5.14), we obtain

Pk + jQk =
1

2

N∑
n=1

VmkVmn [cos(ϕk − ϕn) + j sin(ϕk − ϕn)] (Gkn − jBkn),

(k = 1, 2, ..., N). (5.22)
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After simple algebraic transformation, we find

Pk + jQk =
1

2

N∑
n=1

VmkVmn [Gkn cos(ϕk − ϕn) +Bkn sin(ϕk − ϕn)]

+
j

2

N∑
n=1

VmkVmn [Gkn sin(ϕk − ϕn)−Bkn cos(ϕk − ϕn)] ,

(k = 1, 2, ..., N). (5.23)

Now, by separating real and imaginary parts in the last equations, we derive

Pk =
1

2

N∑
n=1

VmkVmn [Gkn cos(ϕk − ϕn) +Bkn sin(ϕk − ϕn)] , (5.24)

Qk =
1

2

N∑
n=1

VmkVmn [Gkn sin(ϕk − ϕn)−Bkn cos(ϕk − ϕn)] , (5.25)

(k = 1, 2, ..., N).

Finally, by introducing rms values Vk and Vn instead of peak values Vmk
and Vmn, equations (5.24) and (5.25) can be written as follows:

Pk =
N∑
n=1

VkVn [Gkn cos(ϕk − ϕn) +Bkn sin(ϕk − ϕn)] ,

Qk =
N∑
n=1

VkVn [Gkn sin(ϕk − ϕn)−Bkn cos(ϕk − ϕn)] ,

(k = 1, 2, ..., N).

(5.26)

(5.27)

This is the final set of power flow equations. The power flow equations can

also be written in another (more compact) form. To arrive at this form, we

shall use the following expression

Y ∗kn = |Ykn|e−jγkn (5.28)

instead of (5.20).

Then, by substituting formulas (5.17), (5.21) and (5.28) into equations

(5.14), we find

Pk + jQk =
1

2

N∑
n=1

VmkVmn|Ykn|ej(ϕk−ϕn−γkn),

(k = 1, 2, ..., N). (5.29)
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By separating real and imaginary parts in the last equations and replacing

peak values of voltages by their rms values, we end up with power flow

equations in the form

Pk =
N∑
n=1

VkVn|Ykn| cos(ϕk − ϕn − γkn),

Qk =
N∑
n=1

VkVn|Ykn| sin(ϕk − ϕn − γkn),

(k = 1, 2, ..., N).

(5.30)

(5.31)

It is apparent that this is a set of 2N nonlinear simultaneous equations.

These equations are nonlinear with respect to voltages because of product

terms VkVn and with respect to initial phases ϕk because of cosine and sine

terms. In these equations, |Ykn| and γkn are regarded as known and they

are determined from the connectivity of buses in the power transmission

network. In these equations, Pk and Vk for k = 1, 2, ..., G as well as Pk and

Qk for k = G + 1, G + 2, ..., N are also known because the corresponding

buses are generator and load buses, respectively. Thus, it can be concluded

that the 2N nonlinear equations (5.26) and (5.27) have 2N unknowns,

which are Qk and ϕk for k = 1, 2, ..., G as well as Vmk and ϕk for k =

G+ 1, G+ 2, ..., N . By solving these nonlinear equations numerically, these

unknowns can be found. It must be remarked that not all these equations

are fully coupled. Namely, the so-called P -equations for real powers Pk at

all buses (equations (5.30) for k = 1, 2, ..., N) and the so-called Q-equations

for reactive powers Qk at all load buses (equations (5.31) for k = G+1, G+

2, ..., G + L = N) are coupled and constitute N + L nonlinear equations

with respect to ϕk (k = 1, 2, ..., N) and Vk (k = G+1, G+2, ..., G+L = N).

As soon as these N + L coupled nonlinear equations are solved, reactive

power Qk at generator buses can be computed by using formulas (5.31) for

k = 1, 2, ..., G.

One of the most powerful techniques for the solution of these N + L

nonlinear algebraic equations is the Newton-Raphson method which is dis-

cussed in the next section. Here, however, it is worthwhile to mention

some intrinsic difficulties associated with power flow equations (5.30) and

(5.31) which stem from their nonlinear nature. First, these real nonlinear

equations may not always have solutions. Physically, it means that not

all regimes of power systems specified by the conditions at generator and

load buses are realizable. A simple example of this situation is when the

total power demand exceeds the total power generating capacity. Second,
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nonlinear equations usually have not a single but multiple solutions. This

raises an immediate question which of these solutions are relevant to the

operation of power systems and under what circumstances one or another of

these solutions is physically realizable. Third, numerical solution of nonlin-

ear equations is carried out by using iterative techniques. These techniques

usually have local convergence. The latter means that iterations converge

to one of the possible solutions if an initial guess (i.e., a starting point of

iterations) is sufficiently close to this solution. How to choose the initial

guess in order to converge to a desired (relevant) solution is still by and

large an open question. Finally, if a specific solution of the power flow

equations is found, it is not always clear that this solution may correspond

to stable operation of the power system. Interesting research on the aspects

mentioned above has been carried out and published in such papers as [3],

[28], [56].

5.2 Newton-Raphson and Continuation Methods

The Newton-Raphson method is a very powerful iterative technique for the

solution of nonlinear equations. It has a quadratic rate of convergence. Con-

ceptually, it is based on local linearization of nonlinear equations on each

iteration step. For pedagogical reasons, we shall first discuss this technique

for the one-dimensional case, i.e., for a single nonlinear equation with one

unknown and shall prove its quadratic rate of convergence. Subsequently,

we shall discuss the m-dimensional case, i.e., the case of m simultaneous

nonlinear equations with m unknowns.

Consider the nonlinear equation

f(x) = 0, (5.32)

where f is a nonlinear function of a single variable x. We are looking for

a solution x∗ of this equation. This means that we want to find such a

number x∗ that

f(x∗) = 0. (5.33)

The essence of the Newton-Raphson method is that we start from some

initial guess x0 and linearize function f(x) around x0 by using the first two

(linear) terms of the Taylor expansion:

f(x) ≈ f(x0) + f ′(x0)(x− x0). (5.34)
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Since we want to solve equation (5.32), we consider the solution x1 of linear

equation

f(x0) + f ′(x0)(x1 − x0) = 0 (5.35)

as the next (hopefully better than x0) approximation to the actual solution

x∗. From the last formula we find

x1 = x0 −
f(x0)

f ′(x0)
. (5.36)

Having found x1, we shall linearize function f(x) around x1 by using the

first two terms of the Taylor expansion,

f(x) ≈ f(x1) + f ′(x1)(x− x1), (5.37)

and consider the solution x2 of linear equation

f(x1) + f ′(x1)(x2 − x1) = 0 (5.38)

as the next approximation to the actual solution x∗.

From the last formula we find

x2 = x1 −
f(x1)

f ′(x1)
. (5.39)

Now, we shall linearize function f(x) around x2 by using the first two terms

of the Taylor expansion and solve the corresponding linear equation. We

shall continue local linearizations for f(x) around each iteration and find

the solution of the corresponding linear equations until the convergence of

such iterations is achieved with desired accuracy. It is apparent that on

iteration number k we have to solve linear equation

f(xk) + f ′(xk)(xk+1 − xk) = 0, (5.40)

which leads to

xk+1 = xk −
f(xk)

f ′(xk)
. (5.41)

Thus, the same formula (5.41) has to be repeatedly used to find new ap-

proximations.

The geometric interpretation of the Newton-Raphson method is illus-

trated by Figure 5.1. It is clear that linear equation (5.34) is the equation

of the tangent line to the graph of function f(x) at the point (x0, f(x0))

and that x1 is the point of intersection of this tangent line with the x-axis.

The same geometric interpretation is valid for any Newton-Raphson itera-

tion. This geometric interpretation is the reason why the Newton-Raphson

method is also called the method of tangents.
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Fig. 5.1

We shall next prove the convergence of the Newton-Raphson method

and establish its quadratic rate of convergence. To this end, by using

formula (5.33), we shall make the following equivalent transformation of

formula (5.41):

xk+1 − x∗ = xk − x∗ −
f(xk)− f(x∗)

f ′(xk)
. (5.42)

The next step is to rewrite the last formula as

xk+1 − x∗ =
f ′(xk)(xk − x∗)

f ′(xk)
− f(xk)− f(x∗)

f ′(xk)
. (5.43)

Now, we shall use the mean value theorem to represent the difference

f(xk)− f(x∗) in the form

f(xk)− f(x∗) = f ′ (x̃k) (xk − x∗), (5.44)

where x̃k is between xk and x∗. The latter implies the inequality

|xk − x̃k| < |xk − x∗|. (5.45)

By substituting formula (5.44) into equation (5.43), we obtain

xk+1 − x∗ =
f ′(xk)− f ′ (x̃k)

f ′(xk)
(xk − x∗), (5.46)

which leads to

|xk+1 − x∗| =
|f ′(xk)− f ′ (x̃k)|

|f ′(xk)|
|xk − x∗|. (5.47)

Next, we have

|f ′(xk)− f ′(x̃k)| ≤ max |f ′′(x)||xk − x̃k|. (5.48)
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From formula (5.45) and the last inequality follows that

|f ′(xk)− f ′(x̃k)| ≤ max |f ′′(x)||xk − x∗|. (5.49)

By taking into account the last inequality in formula (5.47), we derive

|xk+1 − x∗| ≤ C|xk − x∗|2, (5.50)

where

C =
max |f ′′(x)|
min |f ′(x)|

. (5.51)

By using inequality (5.50) the local convergence of Newton-Raphson itera-

tions can be established. Indeed, let us suppose that we can find such an

initial guess x0 that

C|x0 − x∗| = q < 1. (5.52)

Then, from inequality (5.50) written for k = 0, we find

|x1 − x∗| ≤
q2

C
. (5.53)

Next, by using inequality (5.50) for k = 1, we obtain

|x2 − x∗| ≤ C|x1 − x∗|2. (5.54)

The last two inequalities imply that

|x2 − x∗| ≤
q4

C
. (5.55)

Now, by using the induction argument, it is easy to establish that

|xk − x∗| ≤
q2k

C
. (5.56)

Since q < 1 (see formula (5.52)), the last inequality implies that

lim
k→∞

|xk − x∗| = 0. (5.57)

Thus, the convergence of the Newton-Raphson iterations is established.

This is very fast convergence because according to (5.50) the deviation of

new iteration xk+1 from the solution x∗ is of the second order of small-

ness in comparison with the deviation of the previous iteration xk from

the same solution x∗. This is the reason why it is said that the Newton-

Raphson method has the quadratic rate of convergence. However, it must

be stressed that the convergence of the Newton-Raphson iterations has been

established under the condition that the initial guess x0 is chosen in such a

way that the inequality (5.52) is satisfied. In other words, the convergence
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Fig. 5.2

is established when the initial guess x0 is sufficiently close to an actual so-

lution x∗. It is quite possible that the convergence may occur even when

the inequality (5.52) is not satisfied and that this possibility is not captured

by the presented proof of convergence. Nevertheless, it can be graphically

illustrated that in general Newton-Raphson iterations do not converge for

any choice of initial guess x0. This illustration is presented in Figure 5.2.

Thus, it can be concluded that in general the Newton-Raphson technique

has local convergence. This is especially true when equation (5.32) has

many solutions.

Now, we shall proceed to the discussion of the multi-dimensional case,

that is, the case when we deal with many simultaneous equations with

respect to many unknowns. Conceptually, our discussion will replicate the

presented discussion of the one-dimensional case.

Consider m simultaneous nonlinear equations with m unknowns:


F1(x1, x2, ..., xm) = 0,

F2(x1, x2, ..., xm) = 0,
...

Fm(x1, x2, ..., xm) = 0.

(5.58)

These simultaneous equations can be written in concise vector form as

F(x) = 0, (5.59)
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where F and x are m-dimensional vectors

F(x) =


F1(x)

F2(x)
...

Fm(x)

 , x =


x1

x2

...

xm

 . (5.60)

We are interested in numerical solution of simultaneous equations (5.59) by

using the Newton-Raphson iterations. To start these iterations, we choose

some initial guess x0 and we linearize the nonlinear vector function F(x)

around this guess. This is done by using the first two (linear) terms of

the Taylor expansion of F(x) at x0. In vector form these two terms of the

Taylor expansion can be written as

F(x) ≈ F(x0) + Ĵ(x0)(x− x0), (5.61)

where Ĵ(x0) is the Jacobian matrix of F(x) at x0. The elements of this

matrix are the first derivatives of functions Fi(x) evaluated at x0. Namely,

Ĵ(x0) =



∂F1

∂x1
(x0) ∂F1

∂x2
(x0) · · · ∂F1

∂xm
(x0)

∂F2

∂x1
(x0) ∂F2

∂x2
(x0) · · · ∂F2

∂xm
(x0)

...
...

. . .
...

∂Fm
∂x1

(x0) ∂Fm
∂x2

(x0) · · · ∂Fm∂xm
(x0)

 . (5.62)

The first approximation (the first iteration) x1 to the solution of simul-

taneous equations (5.59) can be found by equating the right-hand side of

formula (5.61) to zero. This leads to

Ĵ(x0)(x1 − x0) = −F(x0). (5.63)

By introducing vector

X1 = x1 − x0, (5.64)

the last formula can be written as

Ĵ(x0)X1 = −F(x0). (5.65)

These are linear simultaneous equations for the components of X1. By

solving these linear equations, we can find X1 and then according to formula

(5.64) we can compute the new iteration vector x1:

x1 = x0 + X1. (5.66)

Having found x1, we shall linearize nonlinear vector function F(x) around

x1 by using the first two terms of the Taylor expansion. Then, we equate
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these two linear terms to zero to find the new iteration x2. Afterwards, the

process is repeated to find subsequent iterations. These Newton-Raphson

iterations can be summarized by the following recurrent relations:

Ĵ(xk)Xk+1 = −F(xk),

xk+1 = xk + Xk+1.

(5.67)

(5.68)

Thus, numerical realization of Newton-Raphson iterations requires the so-

lution of simultaneous linear equations (5.67) with the Jacobian matrix

Ĵ(xk) and the right-hand side −F(xk) being computed by using the previ-

ous iteration xk. After simultaneous linear equations (5.67) are solved, the

new iteration is computed by using formula (5.68).

Formulas (5.67) and (5.68) are convenient for performing computations.

However, for the convergence study of the Newton-Raphson technique it is

convenient to represent these formulas in another equivalent form,

Ĵ(xk)(xk+1 − xk) = −F(xk), (5.69)

which leads to

xk+1 = xk − Ĵ−1(xk)F(xk), (5.70)

where Ĵ−1(xk) is the inverse of the Jacobian Ĵ(xk). Let x∗ be a solution

of equations (5.59), i.e.,

F(x∗) = 0. (5.71)

By using the last formula, the recurrent relations (5.70) can be represented

in the following equivalent form:

xk+1 − x∗ = xk − x∗ − Ĵ−1(xk)[F(xk)− F(x∗)]. (5.72)

Next, we shall derive the integral formula for the difference F(xk)−F(x∗).

To this end, we introduce the vector

x(λ) = x∗ + λ(xk − x∗), 0 ≤ λ ≤ 1. (5.73)

It is clear that

x(0) = x∗ and x(1) = xk. (5.74)

Now, it is clear that

F(xk)− F(x∗) =

∫ 1

0

dF(x(λ))

dλ
dλ. (5.75)

By performing differentiation, we find

dF(x(λ))

dλ
= Ĵ(x(λ))(xk − x∗). (5.76)
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By substituting the last formula into equation (5.75), we obtain

F(xk)− F(x∗) =

[∫ 1

0

Ĵ(x(λ))dλ

]
(xk − x∗). (5.77)

The last formula is the substitute for the mean value relation (5.44) in the

multi-dimensional vectorial case.

Next, we insert the last formula into equation (5.72),

xk+1 − x∗ =

[
Î + Ĵ−1(xk)

∫ 1

0

Ĵ(x(λ))dλ

]
(xk − x∗), (5.78)

where Î is the identity matrix, which can be represented as

Î = Ĵ−1(xk)Ĵ(xk). (5.79)

By inserting the last formula into equation (5.78), we derive

xk+1 − x∗ = Ĵ−1(xk)

[
Ĵ(xk)−

∫ 1

0

Ĵ(x(λ))dλ

]
(xk − x∗). (5.80)

From the last formula follows the inequality

‖xk+1 − x∗‖ ≤
∥∥∥Ĵ−1(xk)

∥∥∥∥∥∥∥Ĵ(xk)−
∫ 1

0

Ĵ(x(λ))dλ

∥∥∥∥ ‖xk − x∗‖, (5.81)

where ‖·‖ is a norm (for instance, `2-norm) in m-dimensional space. Next,

we find that∥∥∥∥Ĵ(xk)−
∫ 1

0

Ĵ(x(λ))dλ

∥∥∥∥ =

∥∥∥∥∫ 1

0

[
Ĵ(xk)− Ĵ(x(λ))

]
dλ

∥∥∥∥ . (5.82)

The elements of matrix Ĵ(xk)− Ĵ(x(λ)) are

∂Fi
∂xj

(xk)− ∂Fi
∂xj

(x(λ)). (5.83)

By assuming that the second-order derivatives of functions Fi(x) are

bounded, it can be concluded that∣∣∣∣∂Fi∂xj
(xk)− ∂Fi

∂xj
(x(λ))

∣∣∣∣ < L‖xk − x(λ)‖, (5.84)

where L is some constant. This, according to (5.73), implies that∣∣∣∣∂Fi∂xj
(xk)− ∂Fi

∂xj
(x(λ))

∣∣∣∣ ≤ (1− λ)L‖xk − x∗‖. (5.85)

From formula (5.83) and the last inequality follows that∥∥∥∥Ĵ(xk)−
∫ 1

0

Ĵ(x(λ))dλ

∥∥∥∥ ≤ D‖xk − x∗‖, (5.86)

where D is some constant.
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Now, by taking into account the last inequality in formula (5.81) and

assuming that norms
∥∥∥Ĵ−1(xk)

∥∥∥ are bounded, we conclude that for some

constant C the following inequality is valid:

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖2. (5.87)

This inequality is similar to inequality (5.50) derived for the one-

dimensional case. Consequently, by using the same line of reasoning as

before, it can be established that if the initial guess x0 is chosen in such a

way that

C‖x0 − x∗‖ = q < 1, (5.88)

then

‖xk − x∗‖ <
q2k

C
, (5.89)

which implies the convergence of the Newton-Raphson iterations. This

establishes local quadratic convergence of iterations (5.67)-(5.68).

Now, we shall apply the Newton-Raphson technique (5.67) and (5.68) to

the solution of the power flow equations (5.30)-(5.31). As was pointed out

in the previous section, not all these equations are fully coupled. Namely,

all P -type equations for active power at all buses and Q-type equations

for reactive power at all load buses constitute N + L coupled nonlinear

equations for N + L unknowns which are the initial phases of voltages at

all (N) buses and rms values of voltages at all (L) load buses. We shall

write these equations again in the form (5.58) by using different notations

for indices and numerating first all load buses instead of generator buses.

Then, these nonlinear equations are

Fi(x) = Pi −
N∑
j=1

ViVj |Yij | cos(ϕi − ϕj − γij) = 0, (5.90)

(i = 1, 2, ..., N),

FN+i(x) = Qi −
N∑
j=1

ViVj |Yij | sin(ϕi − ϕj − γij) = 0, (5.91)

(i = 1, 2, ..., L),

where the unknown vector x has the components

xj = ϕj , (j = 1, 2, ..., N), (5.92)

xN+j = Vj , (j = 1, 2, ..., L). (5.93)
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It is clear now that the Jacobian Ĵ(x) has four major blocks:

Ĵ =



∂Fi
∂ϕj

∂Fi
∂Vj

N

N L

∂FN+i

∂ϕj
L

∂FN+i

∂Vj



. (5.94)

From formulas (5.90) and (5.91) we easily derive the elements of the Jaco-

bian matrix:

∂Fi
∂ϕj

= −ViVj |Yij | sin(ϕi − ϕj − γij) if i 6= j, (5.95)

∂Fi
∂ϕi

=
N∑
j=1

ViVj |Yij | sin(ϕi − ϕj − γij), (5.96)

∂FN+i

∂ϕj
= ViVj |Yij | cos(ϕi − ϕj − γij) if i 6= j, (5.97)

∂FN+i

∂ϕi
= −

N∑
j=1

ViVj |Yij | cos(ϕi − ϕj − γij), (5.98)

∂Fi
∂Vj

= −Vi|Yij | cos(ϕi − ϕj − γij) if i 6= j, (5.99)

∂Fi
∂Vi

= −
N∑
j 6=i

Vj |Yij | cos(ϕi − ϕj − γij)− 2Vi|Yii| cos γii, (5.100)

∂FN+i

∂Vj
= −Vi|Yij | sin(ϕi − ϕj − γij) if i 6= j, (5.101)

∂FN+i

∂Vi
= −

N∑
j 6=i

Vj |Yij | sin(ϕi − ϕj − γij) + 2Vi|Yii| sin γii. (5.102)

Having specified the above formulas for the computation of the matrix

elements of the Jacobian, the numerical realization of the Newton-Raphson

iterations (5.67)-(5.68) becomes transparent.
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Next, we shall discuss another efficient method for numerical solution

of nonlinear algebraic equations which is often used in combination with

the Newton-Raphson method. This is the continuation method.∗ The

central idea of this method can be briefly described as follows. Consider

two separate sets of simultaneous nonlinear equations

F0(x) = 0 (5.103)

and

F1(x) = 0. (5.104)

Suppose that a solution x0 of nonlinear equations (5.103) is known (or

found), i.e., F(x0) = 0. We want to find a solution of equation (5.104).

For this purpose, we introduce a new vector-function F(x, λ), where λ is a

parameter (i.e., a real number) which varies (for instance) between 0 and

1,

0 ≤ λ ≤ 1. (5.105)

This parameter is introduced in such a way that

F(x, 0) = F0(x) (5.106)

and

F(x, 1) = F1(x). (5.107)

In other words, by continuously varying the parameter λ, the vector-

function F(x, λ) is continuously deformed from F0(x) into F1(x).

One example (just an example) of such introduction of parameter λ is

illustrated by the formula

F(x, λ) = (1− λ)F0(x) + λF1(x). (5.108)

Next, for each value of λ we consider simultaneous nonlinear equations

F(x(λ), λ) = 0. (5.109)

Here, we use the notation x(λ) for a solution of nonlinear equations (5.109)

because this solution varies with variations of λ and, consequently, this

solution is a function of λ.

Now, by differentiating both sides of formula (5.109) with respect to λ,

we obtain

Ĵx(x(λ), λ)
dx(λ)

dλ
+
∂F(x(λ), λ)

∂λ
= 0, (5.110)

∗This method was proposed by Russian mathematician D. F. Davidenko for numerical
solution of nonlinear algebraic equations, although for analysis of PDEs it was much
earlier developed by S. N. Bernstein.
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where Ĵx is, as before, the Jacobian matrix of F(x(λ), λ) whose elements

are the first-order partial derivatives of F with respect to the Cartesian

components of vector x(λ) (see formula (5.62)).

The last formula can be written as

Ĵx(x(λ), λ)
dx(λ)

dλ
= −∂F(x(λ), λ)

∂λ
(5.111)

and treated as the differential equation for x(λ) with the initial condition

x(0) = x0, (5.112)

where, as mentioned above, x0 is a solution of equation (5.103).

By numerically integrating the initial value problem (5.111)-(5.112) in

the closed interval (5.105), vector x(1) may be found. According to formulas

(5.107) and (5.109), this vector is a solution of nonlinear equations (5.104).

This is, in a nutshell, the essence of the continuation method, which reduces

the numerical solution of algebraic equations to numerical integration of

specific differential equations.

If the Jacobian in equation (5.111) is invertible for all λ (which is not

always the case), then this equation can be written in the form

dx(λ)

dλ
= −Ĵ−1

x (x(λ), λ)
∂F(x(λ), λ)

∂λ
(5.113)

and numerically integrated with the initial condition (5.112). This integra-

tion can be accomplished by introducing some mesh

0 < λ1 < λ2 < · · · < λn = 1 (5.114)

and by replacing the differential equation (5.113) by the finite-difference

equation

x(λk+1)− x(λk)

λk+1 − λk
' −Ĵ−1

x (x(λk), λk)
∂F

∂λ
(x(λk), λk). (5.115)

The last equation can also be written in the form

x(λk+1) ' x(λk)− (λk+1 − λk)Ĵ−1
x (x(λk), λk)

∂F

∂λ
(x(λk), λk). (5.116)

By using the last formula, x(λk) can be consecutively computed until

x(λn) = x(1) is found. However, more accurate results can be obtained

if the accuracy of x(λk) is improved (for each λk) by using the Newton-

Raphson iterations. In this case, x(λk) computed by means of formula

(5.116) is used as an initial guess (i.e., as a starting point) for the Newton-

Raphson iterations.
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It is clear from the above description of the general scheme of the con-

tinuation method that there is freedom in choices of function F0(x) and

the continuation parameter λ. Function F0(x) is usually chosen to simplify

numerical solution of equations (5.103), i.e., to simplify the computing of

initial condition x0 in (5.112). F0(x) can even be, for instance, a linear

vector-function. As far as λ is concerned, it is beneficial to introduce pa-

rameter λ in the load terms of the power flow equations. Such a parameter

can naturally be called a “load parameter.” Then, by using the continua-

tion method (i.e., by integrating the appropriate differential equations), the

nonlinear power flow equations can be solved for different loading condi-

tions. In other words, in this case, solutions of equations (5.109) for various

values of λ (not only for λ = 1) become physically and practically mean-

ingful. The detailed discussion of this and other issues is beyond the scope

of this book and can be found in [2], where the continuation technique is

extensively used for voltage stability assessment and control in power sys-

tems. It is worthwhile to mention that the continuation method has been

widely used for solution of various nonlinear problems. For instance, it has

been used in [31] for solution of nonlinear magnetostatic problems when

saturation of ferromagnetic cores must be accounted for.

5.3 Stability of Power Systems

In the previous chapter (see section 4.4), we have discussed static stability

of the synchronous generator under the condition of complete balance be-

tween loads and generation, that is, when synchronism is maintained. In

this section, our discussion will be concerned with the transient stability of

synchronous generators when this balance is perturbed. Transient stabil-

ity implies the ability of the synchronous generator to attain synchronism

(or close to synchronous performance) after sudden disturbances. These

disturbances create imbalances between generation and loads which cause

rotor speed deviations from synchronous speed. Thus, it is clear that the

transient stability study should be based on the analysis of dynamics of

mechanical motion of rotors of synchronous generators. For this reason, we

shall start with the derivation of the so-called “swing” equation which de-

scribes nonsynchronous dynamics of the rotor. We shall limit our discussion

of transient stability to the case of a single generator. The case of multiple

generators is very difficult from the mathematical point of view and will

not be addressed in this text. Even in the case of a single generator, our
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Fig. 5.3

analysis will be limited to the discussion of the very basic facts and many

important details will not be covered.

First, we shall demonstrate that the dynamics of the rotor is described

by the following equation:

I
dΩ(t)

dt
= Tap, (5.117)

where I is the moment of inertia of the rotor, Tap is the torque applied to

the rotor, while Ω(t) is the instantaneous angular speed of the rotor. This

speed is given by the formula

Ω(t) =
dα(t)

dt
(5.118)

with α(t) being an angle between some chosen axis of the rotating rotor

and the fixed (stator) axis (see Figure 5.3). To derive equation (5.117), we

shall start with the second Newton’s law for infinitesimally small volume

dV of the rotor,

adm = rβdm = dF, (5.119)

where dF is a force applied to this volume, dm is its mass, a is its acceler-

ation, while β is its angular acceleration.

It is apparent that

β =
dΩ(t)

dt
. (5.120)

Next, we shall multiply all sides of equation (5.119) by r and integrate over

the volume V of the rotating rotor. This yields

β

∫
V

r2dm =

∫
V

rdF. (5.121)
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It is apparent that ∫
V

rdF = Tap, (5.122)

while ∫
V

r2dm = I. (5.123)

Now, by substituting formulas (5.120), (5.122) and (5.123) into equation

(5.121), we shall arrive at equation (5.117).

By using formula (5.118), the dynamics equation (5.117) can be written

as the following second-order differential equation:

I
d2α(t)

dt2
= Tap. (5.124)

It is very convenient to replace the angle α(t) between the rotor and stator

axes by the angle θ(t) between the rotor axis and the axis of the in-gap

magnetic field rotating with constant synchronous speed Ωsyn with respect

to the stator. This can be done by using the formula (see Figure 5.3)

α(t) = θ(t) + Ωsynt. (5.125)

By twice differentiating the last equation with respect to time, we find

d2α(t)

dt2
=
d2θ(t)

dt2
, (5.126)

and, consequently, equation (5.124) can be written as

I
d2θ(t)

dt2
= Tap. (5.127)

Next, we shall multiply both sides of equation (5.127) by Ω(t):

IΩ(t)
d2θ(t)

dt2
= TapΩ(t). (5.128)

The right-hand side of the last equation has the meaning of total power

applied to the rotor. This power is the difference between the mechanical

shaft power Pmech supplied by the prime mover, which drives the rotor,

and the generated electric power P supplied to the power network. Pmech
corresponds to the mechanical shaft torque applied by the prime mover,

while P corresponds to electromagnetic torque caused by interaction of

armature reaction magnetic field and rotor currents. Thus,

TapΩ(t) = Pap = Pmech − P. (5.129)
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The product IΩ(t) in the left-hand side of equation (5.128) is called angular

momentum M ,

M = IΩ(t). (5.130)

This angular momentum varies with time. However, it is usually assumed

in transient stability studies that deviations of rotor angular speed are small

in comparison with synchronous speed, i.e.,

Ω(t) ≈ Ωsyn. (5.131)

For this reason, it can be assumed that

M ≈ const. (5.132)

By substituting formulas (5.129) and (5.130) into equation (5.128), we end

up with

M
d2θ(t)

dt2
= Pmech − P. (5.133)

As discussed in the last section of the previous chapter, geometric angle

θ(t) can be construed as a load (or power) angle which is the phase shift

in time between the induced internal voltage Ês and terminal voltage V̂s.

This fact is used as a justification for using the following expression for P

in the case of cylindrical rotor turbine generators:

P = Pm sin θ, (5.134)

where as before Pm stands for the maximum of P . By substituting the last

relation into formula (5.133), we arrive at

M
d2θ(t)

dt2
= Pmech − Pm sin θ. (5.135)

This is the so-called “swing” equation which has been traditionally used

in the analysis of transient stability. It is worthwhile to stress here that

the derivation of this equation has been based on some approximations.

First, it has been assumed that the total in-gap magnetic field rotates with

constant angular synchronous speed Ωsyn despite the fact that the rotor and

its magnetic field rotate with variable angular speed Ω(t) different from

Ωsyn. This assumption can be justified by accepting the approximation

(5.131) which limits the analysis of transient stabilities to relatively small

deviations of rotor angular speed from synchronous angular speed. Second,

it has been assumed in the derivation of the “swing” equation (5.135) that

formula (5.134) is valid for electric power generated by the synchronous
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machine. However, this formula has been derived in the last section of the

previous chapter for steady-state operation of the synchronous generator,

that is, when the rotor and the armature reaction magnetic field rotate

in synchronism. When this synchronism is maintained, no eddy currents

are induced in the solid rotors of turbine generators. This is not the case

for transient performance of synchronous machines when appreciable eddy

currents may be induced in solid rotors. Furthermore, these eddy currents

may result (among other things) in additional mechanical torque which is

not accounted for in the “swing” equation (5.135). This torque usually has a

damping effect on the rotor dynamics. Phenomenologically, the stabilizing

effect of such damping torques is discussed at the end of this section. The

approximate nature of the “swing” equation (5.135) implies that the results

of transient stability study obtained by using this equation are suggestive

in nature rather than being unquestionably valid.

The swing equation (5.135) is written for cylindrical rotor machines and

the following discussion deals exclusively with these machines. However, a

similar equation can be written for salient pole rotor machines, and many

results of our subsequent discussions can be extended to those machines.

It is convenient to carry out the study of transient stability by writing

the “swing” equation (5.135) in the “state space” form, that is, as coupled

first-order differential equations. This can be done by introducing a new

variable

γ(t) =
dθ(t)

dt
, (5.136)

which according to formulas (5.118) and (5.125) is the measure of deviation

from synchronism

γ(t) = Ω(t)− Ωsyn. (5.137)

Now the “swing” equation can be written as the following two coupled

equations:

dθ(t)

dt
= γ(t),

dγ(t)

dt
=

1

M
[Pmech − Pm sin θ] .

(5.138)

(5.139)

Next, we introduce the function

H(γ, θ) =
γ2

2
− 1

M

[∫ θ

0

(Pmech − Pm sinu)du

]
, (5.140)
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or, after the integration,

H(γ, θ) =
γ2

2
+

1

M
[Pm(1− cos θ)− Pmechθ]. (5.141)

It is clear that

∂H

∂γ
= γ, (5.142)

and

−∂H
∂θ

=
1

M
[Pmech − Pm sin θ]. (5.143)

The last two formulas imply that the dynamics equations (5.138) and

(5.139) can be written as

dθ(t)

dt
=
∂H

∂γ
,

dγ(t)

dt
= −∂H

∂θ
.

(5.144)

(5.145)

The last two relations are Hamiltonian equations and the function H(γ, θ)

is the Hamiltonian, which is why the letter H is used for its notation.

Equations of this type are encountered in many different areas of physics.

Usually, function H in Hamiltonian equations has the physical meaning

of energy. Hamiltonian equations play a central role in modern physics

because they reveal that the underlying dynamics is controlled by energy.

This fundamental physical feature is replicated in the structure of quantum

mechanics where the time evolution of a wave function is controlled by

the Hamiltonian (energy) operator. The Hamiltonian equations (5.144)-

(5.145) are highly symmetric and this aspect is extensively utilized in the

mathematical theory of Hamiltonian equations. We shall use this symmetry

to demonstrate that the Hamiltonian function is an integral (i.e., conserved

quantity) of rotor dynamics. Indeed, suppose that γ(t) and θ(t) are a

solution of equations (5.144)-(5.145), and consider the following function of

time:

H(t) = H[γ(t), θ(t)]. (5.146)

Then,

dH(t)

dt
=
∂H

∂γ

dγ(t)

dt
+
∂H

∂θ

dθ(t)

dt
. (5.147)
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Now, by using equations (5.144) and (5.145) in the last formula, we find

dH(t)

dt
= −∂H

∂γ

∂H

∂θ
+
∂H

∂θ

∂H

∂γ
= 0. (5.148)

The latter implies that

H[γ(t), θ(t)] = const. (5.149)

This means that the quantity H[γ(t), θ(t)] is conserved along any solution

of equations (5.144)-(5.145) or equations (5.138)-(5.139). In other words,

H[γ(t), θ(t)] is an integral of rotor dynamics. The practical significance

of this fact is that any solution trajectory of equations (5.138)-(5.139) on

the (γ, θ)-plane coincides with one constant level line of function H(γ, θ)

given by formula (5.141); and the other way around, each constant level

line of H(γ, θ) coincides with a specific solution trajectory of equations

(5.138)-(5.139). This fact allows one to compute the solution trajectories

for differential equations (5.138)-(5.139). Indeed, we can choose any value

of H. Then, we can choose θ and compute the last term in formula (5.141).

If the value of this term is smaller than the chosen value of H, then by

using formula (5.141) we can compute positive and negative values of γ

corresponding to the chosen values of H and θ. Doing this for different

values of θ but the same value of H, we construct point-by-point a specific

solution trajectory corresponding to the chosen value of H. It is clear from

the above discussion that if for a chosen value of θ the value of the second

term in formula (5.141) is larger than the chosen value of H, then this value

of θ is not reachable by this specific trajectory corresponding to the chosen

value of H. Performing these computations for different values of H, we

can construct a set of solution trajectories which represent a phase portrait

of the dynamical system described by equations (5.138) and (5.139). It

is also clear from the presented discussion that solution trajectories have

even symmetry with respect to the line γ = 0 (which is the θ-axis on the

(γ, θ)-plane). This is so because for any value of θ reachable by a specific

trajectory there are positive and negative values of γ of the same magnitude

(with only one exception when γ = 0).

It is also very helpful for the construction of phase portraits to consider

the critical points of rotor dynamics described by equations (5.138) and

(5.139). The critical points are defined by equations

dθ(t)

dt
= 0,

dγ(t)

dt
= 0. (5.150)
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Fig. 5.4

From the first equation in (5.150) and formulas (5.136) and (5.137) we find

that at the critical points

Ω(t) = Ωsyn (5.151)

and

γ = 0. (5.152)

From the second equation in (5.150) and equation (5.139) we conclude that

at critical points there exists balance of the total power:

Pmech − Pm sin θ = 0. (5.153)

This balance occurs for the following values of θ, (0 < θ < π):

θ1 = sin−1

(
Pmech

Pm

)
<

π

2
(5.154)

and

θ2 = π − θ1 >
π

2
. (5.155)

This is illustrated by Figure 5.4. Thus, it can be concluded that the points

(γ = 0, θ = θ1) and (γ = 0, θ = θ2) on the (γ, θ)-plane are the critical

points of rotor dynamics and they correspond to the physical conditions

when synchronism (see (5.151)) and balance of the total power (see (5.153))

occur.

Next, we shall demonstrate that the critical point (0, θ1) corresponds

to the minimum of Hamiltonian H, while the critical point (0, θ2) is the

saddle point of H. It is clear from formula (5.141) that for any fixed θ,

H is a quadratic function of γ which achieves its minimum at γ = 0. In
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other words, function H(γ, θ) describes a parabolic well with its bottom

(its floor) given by the equation

H(0, θ) =
1

M
[Pm(1− cos θ)− Pmechθ]. (5.156)

We shall now analyze the extremum points of this floor. First, we find that

dH(0, θ)

dθ
=

1

M
[Pm sin θ − Pmech] = 0, (5.157)

which is the same as equation (5.153). Thus, the extremum points of the

floor coincide with the critical points of rotor dynamics. Next,

d2H(0, θ)

dθ2
=
Pm
M

cos θ, (5.158)

and according to (5.154)

d2H(0, θ)

dθ2

∣∣∣∣
θ=θ1

=
Pm
M

cos θ1 > 0, (5.159)

while according to (5.155)

d2H(0, θ)

dθ2

∣∣∣∣
θ=θ2

=
Pm
M

cos θ2 < 0. (5.160)

It is clear from formulas (5.159) and (5.160) that the critical points (0, θ1)

and (0, θ2) are the points at which the floor function H(0, θ) achieves its

minimum and maximum values, respectively. A sketch of function H(0, θ)

is shown in Figure 5.5. Since the second-order mixed derivative ∂2H(γ,θ)
∂γ∂θ

is (identically) equal to zero, it is easy to prove that the critical point (0,

θ1) is the point at which H(γ, θ) achieves its minimum value, while the

critical point (0, θ2) is the saddle point. The latter is transparent from the

geometric point of view because H(γ, θ2) achieves its minimum at γ = 0

and H(0, θ) achieves its maximum at θ = θ2. The fact that point (0, θ1)

is the point of minimum of H and the point (0, θ2) is the saddle point of

H simplifies the construction of the phase portrait of the rotor dynamics

described by the equations (5.138) and (5.139). Indeed, this fact implies

that there are level lines of H(γ, θ) that enclose the critical point (0, θ1)

at which the minimum of H is achieved. These level lines correspond to

the values of H which are between Hmin = H(0, θ1) and Hsad = H(0, θ2).

The structure of these level lines is changed for level values above Hsad as

illustrated by Figure 5.6, where the level lines (and consequently, the phase

portrait of rotor dynamics) are presented for some particular values of Pmech
and Pm. In this figure, θ1 is labeled as θeq, while θ2 is labeled as θsad.
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The first labeling is justified because it is clear from the phase portrait

that the critical point (0, θ1 = θeq) corresponds to stable (equilibrium)

synchronous performance of the generator. Indeed, small perturbations

can only result in rotor dynamics (rotor swings) around this critical point

along closed trajectories (trajectory 1, for instance) and no “run away”

(unstable) rotor dynamics can be observed. The second labeling reflects

that (0, θ2 = θsad) is the saddle point of the dynamics, which is unstable

equilibrium. Indeed, small perturbations may result in values of H above

Hsad and this will cause the “run away” rotor dynamics along trajectory

2, for instance. The solution trajectory (level line of H) that goes through

the saddle point separates stable and unstable regions. For this reason, it

is called the “separatrix.” Thus, it can be concluded that the region on the

(γ, θ)-plane specified by inequality

H(γ, θ) < Hsad (5.161)

is the region of stability, while the region specified by inequality

H(γ, θ) > Hsad (5.162)
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Fig. 5.6

is the region of instability.

The “size” of the stability region (or the depth of the “energy” well)

which is measured by the difference Hsad −Hmin depends on the values of

Pmech and Pm. Indeed, by using formulas (5.154), (5.155) and (5.156), it

can be shown that

Hsad −Hmin =
1

M
[2Pm cos θ1 + Pmech(2θ1 − π)]. (5.163)

It is clear from the last equation and formula (5.154) that the difference

Hsad−Hmin goes to zero as Pmech approaches Pm. This fact has an impor-

tant practical implication: since the stability is compromised when Pmech

is close to Pm and since at synchronism Pmech = P , generators are usually

operated at powers P substantially below Pm.

In power systems, the transient stability analysis is usually performed

for sudden changes of Pmech and/or Pm. Consider one example of such an

analysis. Assume that before time instant t = 0 a generator was delivering

power under the conditions that mechanical shaft power was equal to P
(0)
mech

and Pm was equal to P
(0)
m . The synchronous performance of the generator

under these conditions is characterized by a load (power) angle θ
(0)
eq at

which P
(0)
m sin θ is equal to P

(0)
mech (see Figure 5.7). Then, at time t = 0

the mechanical shaft power is abruptly (very quickly) changed to a new
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value Pnew
mech. It is required to find out if the performance of the generator

will remain stable after this change. To solve this problem, we shall first

find the initial conditions for the rotor dynamics caused by the change in

Pmech. It is apparent that these initial conditions are the values of γ and θ

immediately before the change in Pmech, namely,

γ(0) = 0, θ(0) = θ(0)eq = sin−1

(
P

(0)
mech

P
(0)
m

)
. (5.164)

Then, we shall use the Hamiltonian Hnew for new value Pnew
mech,

Hnew(γ, θ) =
γ2

2
+

1

M

[
P (0)
m (1− cos θ)− Pnew

mechθ
]
, (5.165)

and evaluate this Hamiltonian at initial conditions (5.164) and at the saddle

point (0, θnewsad ), respectively:

Hnew
(
0, θ(0)eq

)
=

1

M

[
P (0)
m (1− cos θ(0)eq )− Pnew

mechθ
(0)
eq

]
, (5.166)

Hnew
sad (0, θnewsad ) =

1

M

[
P (0)
m (1− cos θnewsad )− Pnew

mechθ
new
sad

]
, (5.167)

where (see formulas (5.154) and (5.155))

θnewsad = π − sin−1

(
Pnew
mech

P
(0)
m

)
. (5.168)

Next, we check the stability condition (5.161). Namely, we check the valid-

ity of inequality

Hnew
(
0, θ(0)eq

)
< Hnew

sad (5.169)
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Fig. 5.8

for Hnew(0, θ
(0)
eq ) and Hnew

sad computed by using formulas (5.166), (5.167)

and (5.168). If this inequality is satisfied, then the rotor dynamics after

the sudden change in Pmech will be stable. Otherwise, it is unstable. It

is apparent that the verification of inequality (5.169) is tantamount to the

verification that the initial condition (5.164) belongs to the new region of

stability formed after the change in Pmech.

Next, we shall demonstrate that the stability condition (5.169) is equiv-

alent to the celebrated equal area criterion for stability of rotor dynamics.

To this end, we consider the phase portrait of the rotor dynamics after the

change in Pmech (see Figure 5.8). On this phase portrait, θneweq corresponds

to synchronous operation of the generator for Pnew
mech (see Figure 5.7). It is

clear that for rotor dynamics to be stable, initial condition (0, θ
(0)
eq ) must

be in the region of stability, namely, it should be on some closed trajectory

in the region inside the separatrix. Consider another point (0, θ̃eq) on the

same solution trajectory (see Figure 5.8). Since any solution trajectory is

a level line for the Hamiltonian, we find

Hnew
(
0, θ̃eq

)
= Hnew

(
0, θ(0)eq

)
. (5.170)

Now, by using formula (5.140) for the Hamiltonian, we find from the last
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equation that ∫ θ̃eq

θ
(0)
eq

[
Pnewmech − P (0)

m sinu
]
du = 0. (5.171)

Since θ
(0)
eq < θneweq < θ̃eq, the last equality can be transformed as follows:∫ θneweq

θ
(0)
eq

[
Pnewmech − P (0)

m sinu
]
du =

∫ θ̃eq

θneweq

[
P (0)
m sinu− Pnewmech

]
du. (5.172)

It is apparent that the integral in the left-hand side of equality (5.172) is

equal to the shaded area A1 on Figure 5.7, while the integral in the right-

hand side of equality (5.172) is equal to the shaded area A2 on the same

figure. Consequently,

A1 = A2. (5.173)

This is the equal area stability criterion.

It is worthwhile to stress that the reasoning used in the discussed ex-

ample can be easily extended to a general case of changes in Pmech and

Pm which may be required in the case of fault situations or other emer-

gencies. Namely, the first step is always to find the initial condition for γ

and θ from the operational conditions of the synchronous generator before

the sudden changes in Pmech and Pm occurred. The next step is to form

the new Hamiltonian by using new (changed) values of Pmech and Pm in

formula (5.141) and to find θnewsad by using formulas (5.154) and (5.155)

(please remember that θ2 in these formulas is θsad). Finally, evaluate the

new Hamiltonian at the initial conditions found on the first step and at the

saddle point (γ = 0, θ = θnewsad ) and verify the validity of inequality (5.161).

The outlined procedure of stability verification is quite simple and purely

algebraic in nature. It can always be recast in terms of the equal area

criterion as has been demonstrated above.

In our previous discussion, stable rotor dynamics has consisted of peri-

odic swings around an equilibrium corresponding to synchronous operation

of the generator. These undamped swings occur because the structure of

the “swing” equation (5.135) does not account for any damping which may

occur due to the induced eddy currents in solid conducting rotors or me-

chanical (frictional) losses. One possible way to account for such damping

is by modifying equation (5.135) through the introduction of a damping

term:

M
d2θ(t)

dt2
+D

dθ(t)

dt
= Pmech − Pm sin θ, (5.174)
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where it is assumed that D > 0. As before, the last equation can be written

in the following state space form:

dθ(t)

dt
= γ(t), (5.175)

dγ(t)

dt
= −D

M
γ +

1

M
[Pmech − Pm sin θ]. (5.176)

It can be easily shown that the introduction of damping does not change the

critical points of the dynamics. Namely, the critical points of the dynamics

described by equations (5.175)-(5.176) are the same as the critical points of

the dynamics described by equations (5.138)-(5.139). Let γ(t) and θ(t) be

a solution of equations (5.175)-(5.176) starting from some initial condition

in the region inside the separatrix. Consider H[γ(t), θ(t)]), where H is the

Hamiltonian given by the formula (5.141). Then, we find

dH[γ(t), θ(t)]

dt
=
∂H

∂γ

dγ(t)

dt
+
∂H

∂θ

dθ(t)

dt
. (5.177)

By using equations (5.175) and (5.176) as well as formula (5.141), we obtain

dH[γ(t), θ(t)]

dt
= −D

M
γ2 +

γ

M
[Pmech − Pm sin θ]− γ

M
[Pmech − Pm sin θ],

(5.178)

which is reduced to

dH[γ(t), θ(t)]

dt
= −D

M
γ2 ≤ 0, (5.179)

where the equality is reached only at synchronism when γ = 0. Thus, the

damped rotor dynamics is such that it leads to the continuous decay of

the Hamiltonian function. This continuous decay may eventually bring the

damped dynamics to the minimum of H which is the equilibrium corre-

sponding to synchronous operation of the generator.
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Chapter 6

Induction Machines

6.1 Design and Principle of Operation of Induction

Machines

In this chapter, induction machines are discussed. Induction machines can

be operated as motors as well as generators. Induction motors have been

the workhorse of industry since the very inception of ac power. One of

the reasons is that the induction motors have been extensively used in

various power tools, which have dramatically increased the productivity of

labor. Induction motors achieved and maintained this unique position due

to the simplicity of their design and relatively low cost. During the past

thirty years, this position has been somewhat challenged by the advent

of permanent magnet synchronous motors. However, during the same time

span, induction machines have found new applications as generators in wind

energy systems.

Now, we shall discuss the basic design of induction machines. Induction

machines have two major parts (see Figure 6.1): stator and rotor separated

by a very small air gap. The design of the stator is conceptually identical

to the design of the stator of synchronous machines. Namely, it has a lam-

inated structure. This means that it is assembled of a very large number

of very thin varnished (or oxidized) silicon steel laminations. The latter

is done to substantially reduce eddy current power losses. The stator has

slots uniformly distributed over its interior (gap-facing) surface. The dis-

tributed three-phase windings are embedded in these slots. Furthermore,

these phase windings are shifted with respect to one another along the in-

terior circumference of the stator by 120◦ in the case of two-pole machines

or by 240◦/p in the case of p-pole machines. These three stationary phase

windings are usually connected to a three-phase power network. As a result,

309
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Fig. 6.1

they are excited by currents of the same peak value and the same frequency

but phase-shifted in time with respect to one another by 2π/3 (or 120◦). It

has been demonstrated in Chapter 4 that the stationary distributed three-

phase windings energized in this way create uniformly rotating magnetic

field (when higher-order spatial magnetic field harmonics are neglected). It

has also been shown in Chapter 4 that the speed of rotation of this magnetic

field measured in terms of revolutions per minute is given by the following

formula:

nsyn =
120f

p
. (6.1)

This rotating magnetic field created by the stator winding is at the very

foundation of the principle of operation of the induction machine.

The rotor is the rotating part of an induction machine. It also has

laminated structure to reduce eddy current power losses as well as many

slots uniformly distributed over the exterior (gap-facing) surface of the rotor

(see Figure 6.1). The number of slots in the rotor (Nr) and stator (Ns)

should be carefully chosen to avoid the appearance of very strong parasitic

torques. Especially strong parasitic torques occur when

Ns = Nr or Ns −Nr = 2p, (6.2)

and these torques are detrimental to the operation of induction machines.

The detailed discussion of the physical origin of these parasitic torques

is beyond the scope of this text. We shall only mention that slots are

sometimes skewed slightly along the length of the rotor to suppress parasitic

torques caused by the slotted structure of rotors and stators.
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Rotor windings are embedded in slots. As far as the design of these

windings is concerned, there are two distinct types of rotors of induction

machines: 1) wound rotors and 2) squirrel cage rotors. In the case of wound

rotors, distributed three-phase windings are embedded in rotor slots. These

windings are similar in design to those in stators and they are usually wound

for the same number of poles as the stator windings. These rotor wind-

ings are connected to three slip rings mounted on the rotor shaft. Carbon

brushes ride over these slip rings, and they electrically connect the rotor

windings to three equal external resistances. These external resistances are

usually needed during the start of induction motors in order to increase

overall rotor winding resistances which result in the increase of the start-

ing torque. After the starting of an induction motor is accomplished, the

carbon brushes are externally short-circuited.

In the case of squirrel cage rotors, the rotor slots are occupied by copper

or aluminum bars (known as rotor bars) which are short-circuited by two

conducting end rings of the same material as the rotor bars. As a result,

the conducting rotor windings have the structure of a squirrel cage shown

in Figure 6.2. In the case of squirrel cage rotors, the high resistance during

the start and, consequently, high starting torques can be achieved by using

double-cage or deep-bar rotor designs illustrated in Figures 6.3a and 6.3b,

respectively. These designs exploit the skin effect phenomenon to increase

the rotor winding resistance during the start. Indeed, as is intuitively clear

and will be discussed in detail later, the rotor frequency fr is substantially

higher during the start, i.e., when the rotor is originally at standstill, than

during the normal operation when rotor speed n is close to the synchronous



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 312

312 Fundamentals of Electric Power Engineering

Fig. 6.3

speed of the rotating magnetic field nsyn. For this reason, the skin effect

phenomenon occurs during the start and only outer bars or outer sections

of deep bars are utilized for current conduction, which results in large re-

sistances of rotor windings. During the normal operation with rotor speed

close to synchronous speed and fr close to zero, both outer and inner bars

or entire deep bars are utilized for current conduction and this leads to

small resistances of rotor windings. It must be noted that the manifesta-

tion of the skin effect phenomenon in deep bars (or double-cage bars) is

strongly enhanced by the embedding of these bars in slots surrounded by

high magnetic permeability ferromagnetic material.

Having described the basic design of induction machines, we shall turn

our attention to the discussion of the principle of operation of induction

motors. As mentioned before, the stator winding creates a uniformly ro-

tating magnetic field as soon as this winding is electrically connected to a

conventional three-phase power network. This rotating magnetic field in-

duces currents in the rotor winding. These induced currents interact with

the rotating magnetic field of the stator, and as a result of this interaction,

electromagnetic forces and torque appear that cause the rotor to rotate in

the direction of the stator magnetic field. The latter is the case because

according to Lenz’s law currents are always induced in such a way as to

counteract (to reduce) the cause of induction. The latter is achieved when

the rotor rotates in the same direction as the stator magnetic field because

this reduces the relative speed of the stator magnetic field with respect to

the rotor. It is apparent that the speed n of rotation of the rotor of the in-

duction motor is always below the speed of rotation of the stator magnetic

field nsyn:

n < nsyn. (6.3)
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Indeed, if hypothetically mechanical speed n of the rotor of the induction

motor reaches the speed nsyn of the stator magnetic field, then this mag-

netic field is static (motionless) with respect to the rotor and, consequently,

no currents are induced in the rotor winding and no torque is created. Thus,

this hypothetical situation is not possible. However, as will be discussed in

the last section of this chapter, the mechanical speed of the rotor is actually

very close to the speed of the stator magnetic field nsyn defined by formula

(6.1). Consequently,

n ≈ nsyn =
120f

p
. (6.4)

The last formula clearly suggests that the mechanical speed of the induction

motor can be controlled by controlling the frequency of stator ac currents.

The latter is the foundation for the frequency control of speed of induction

motors that can be achieved by using ac-to-ac power electronic converters.

These converters are discussed in the last part of this book. The integra-

tion of these power converters with induction machines results in so-called

“power semiconductor drives” which have wide-ranging applications in in-

dustry.

It is clear from the presented discussion that the principle of operation

of induction motors is based on the induction of currents in rotor windings

of these motors by stator rotating magnetic fields. This explains why the

word “induction” is used in the name of these motors. It is also clear that

the rotor of induction motors and the stator magnetic field do not rotate

in synchronism (see formula (6.3)). For this reason, induction motors are

often called “asynchronous” motors. There is always some finite “slip”

between the rotating rotor and the rotating stator magnetic field. This slip

is denoted s and mathematically defined by the formula

s =
nsyn − n
nsyn

. (6.5)

The last formula can also be written in terms of angular speeds of the

rotor (Ω) and stator magnetic field (Ωsyn) measured in terms of radians

per second instead of rpm. Namely,

s =
Ωsyn − Ω

Ωsyn
. (6.6)

Since the rotor moves in the same direction as the stator magnetic field

(n > 0) and since inequality (6.3) is valid, we conclude that for induction

motors

0 < s < 1. (6.7)



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 314

314 Fundamentals of Electric Power Engineering

Fig. 6.4

Now, we shall discuss the important relation between the frequency fr of

currents induced in the rotor windings and the frequency f of the stator

currents. To this end, we shall recall that the vector magnetic potential of

the rotating stator magnetic field is given by the formula (see (4.69))

A(r, θ, t) =
3µ0b

2νδ
Fm sin(ωt− νθ), (6.8)

where θ is a polar angle measured in the stator reference frame (see Figure

6.4), ν is (as before) the number of pole pairs (ν = p/2) of the stator

winding, while Fm can be construed as the fundamental spatial harmonic

of mmf created by the entire three-phase stator winding. It is clear from

Figure 6.4 that the angle θ is related to the polar angle θr measured in the

rotor reference frame by the formula

θ = θr + Ωt. (6.9)

By substituting the last relation into equation (6.8), we find the following

expression for the vector magnetic potential in the rotor reference frame:

A(r, θr, t) =
3µ0b

2νδ
Fm sin[(ω − νΩ)t− νθr]. (6.10)

Next, we shall derive the following formula:

ω = νΩsyn. (6.11)

Indeed, from equation (6.1) we have

ω = 2πf = 2π
nsynp

120
=
πnsyn

30
ν. (6.12)

On the other hand,

Ωsyn =
nsyn2π

60
=
πnsyn

30
. (6.13)
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From the last two formulas, we easily obtain relation (6.11). By using this

relation, we derive

ω − νΩ = ν(Ωsyn − Ω) = νΩsyn
Ωsyn − Ω

Ωsyn
. (6.14)

Now, by recalling formulas (6.6) and (6.11), we conclude that

ω − νΩ = sω. (6.15)

By using the last equation in formula (6.10), we find

A(r, θr, t) =
3µ0b

2νδ
Fm sin[sωt− νθr], (6.16)

which means that in the rotor reference frame the vector magnetic potential

of the stator magnetic field and, consequently, the magnetic field itself, vary

with the angular frequency

ωr = sω. (6.17)

This implies that the rotating stator magnetic field will induce electric

currents in the rotor winding whose frequency fr is given by the formula

fr = sf. (6.18)

It is apparent from the last equation that the rotor frequency is the largest

(fr = f) when the rotor is at standstill and that fr ≈ 0 during the normal

operation when n ≈ nsyn. This fact has already been used in our discussion

of operation of induction motors with double-cage and deep-bar rotors.

It is mentioned in the beginning of this section that the air gap lengths

δ in induction motors are quite small. One of the important reasons is

that the smaller the air gap length, the less reactive power needed for the

performance of an induction motor and the larger its power factor. To

illustrate this, the following expression for the power factor can be invoked:

cosϕ =
P∣∣∣Ŝ∣∣∣ =

P√
P 2 +Q2

. (6.19)

As was demonstrated in Chapter 3 of Part I, in magnetic systems with air

gaps most of the magnetic field energy is localized in the air gaps. This

means that when the same peak value of magnetic flux density is maintained

in the air gaps, the smaller the air gap, the smaller the reactive power that

is needed to be supplied and, according to formula (6.19), the larger the

power factor. This explains why the air gap length in the induction motor

is very small and it is usually between 0.5 and 3 millimeters. One may

even say that “an air gap in an induction motor is so small that snakes can
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hardly crawl through it.” This is clearly in contrast with the large air gaps

in synchronous generators, which for two-pole machines may approach 15

cm. Large air gaps in synchronous generators result in reduction of their

synchronous impedances, which is beneficial (among other things) for static

and transient stability of these generators.

It is clear from the presented discussion of the design and principle

of operation of induction motors that in these motors there exists a very

strong electromagnetic coupling between stator and rotor windings. In this

sense, induction motors are quite similar to transformers. This very strong

electromagnetic coupling makes many elements of the theory of induction

motors (in particular, the structure and the derivation of their equivalent

circuits) resemble those of transformers.

Up to this point, the operation of induction machines as motors has been

discussed. However, induction machines can be operated as generators as

well. This can be achieved by connecting a rotor of an induction machine

to a prime mover (turbine, for instance) and by driving the rotor above the

synchronous speed:

n > nsyn. (6.20)

This, according to formula (6.5), results in negative slip:

s < 0. (6.21)

It can be shown (see the last section of this chapter) that the change in

the sign of slip results in the change in the sign of active electric power

at the induction machine terminals. This change in sign implies that the

induction machine instead of being operated as a motor for s > 0 is op-

erated as a generator for s < 0. It is remarkable that it generates active

power of the frequency of the power network to which it is connected de-

spite the non-synchronous (and possibly variable) speed of its rotor. This

makes this regime of induction generator attractive for utilization in wind

energy systems. Indeed, the speed of wind turbines is not constant in time.

However, by connecting wind turbines to rotor shafts of induction machines

through proper gearboxes, it is possible to maintain the rotor speed above

synchronous and to operate induction machines as wind turbine-driven gen-

erators.

There exists another way to operate wound rotor induction machines as

variable-speed generators of ac electric power of constant frequency. In this

case, the induction machines are operated as doubly-fed machines. The

latter implies that both stator and rotor windings of such machines are
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connected to power networks. For stator windings, these are direct con-

nections, while rotor windings are connected to the same power networks

through slip rings, brushes and ac-to-ac power electronic converters. These

converters supply ac currents to the distributed three-phase rotor windings

of such controllable frequency that these excited rotor windings create ro-

tor magnetic field rotating with respect to the rotor at the speed n′ equal

to nsyn − n. This implies that these rotor magnetic fields rotate with re-

spect to stators with synchronous speed nsyn. In this sense, the rotors

of such doubly-fed induction machines create the same magnetic fields as

rotors of synchronous generators excited by dc currents and driven with

constant-in-time synchronous speed. Such doubly-fed induction generators

are now extensively used in wind power generation. It is worthwhile to

note that induction generators, in contrast with synchronous generators,

are not stand-alone generators; they require the energized power network

for their operation. This may eventually limit the penetration of induction

machine-based wind power generation in existing utility power systems.

6.2 Coupled Circuit Equations and Equivalent Circuits for

Induction Machines

In induction machines, there are stator and rotor windings which are

strongly electromagnetically coupled. For instance, in the case of wound

rotor machines, there are three-phase windings on the stator and three-

phase windings on the rotor which are all coupled to one another. This,

in general, results in six coupled circuit equations. However, these cou-

pled equations can be appreciably simplified and reduced to two coupled

equations by taking into account that the electromagnetic coupling is mostly

actualized through rotating magnetic fields. Indeed, the stator currents have

the same peak values, the same frequency and they are phase-shifted in time

by 120◦. These currents create the rotating magnetic field of the stator,

which induces three voltages in the three-phase distributed windings of the

rotor which are of the same magnitude and phase-shifted in time by 120◦.

These voltages result in three-phase rotor currents of the same magnitude

and phase-shifted in time by 120◦. These currents in the rotor windings

also create rotating magnetic fields in the air gaps of induction machines,

and the coupling between various windings is realized through these rotating

magnetic fields of the stator and rotor. Magnetic fields created by stator

windings rotate with speed nsyn given by formula (6.1). Similarly, magnetic
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fields created by the rotor windings rotate with respect to the rotor with

speed n′syn given by the formula

n′syn =
120fr
p

. (6.22)

By taking into account that rotor frequency fr is related to stator frequency

f by expression (6.18), from the last equation we find

n′syn =
120f

p
s = snsyn, (6.23)

which, according to the definition of slip s (see (6.5)), means that

n′syn = nsyn − n, (6.24)

where as before n is the rotational speed of the rotor. From the last equation

immediately follows that the magnetic fields created by the rotor windings

rotate with respect to the stator with speed nsyn. In other words, magnetic

fields of the stator and rotor windings rotate in synchronism.

In section 4.3, we derived the following expression for the reactance of

the stator winding (see formula (4.109)):

X
(m)
11 =

12µ0b`

δ
fN2

1 k
2
w1, (6.25)

where all notations have the same meaning as before, and subscript “1”

indicates that the quantities are related to the stator windings, which are

regarded as the primary windings. It is discussed in section 4.3 that the

reactance X
(m)
11 accounts for voltage induced in one phase of the stator

winding by the rotating magnetic field created by three-phase currents in

the stator winding. In this sense, this reactance accounts for self and mu-

tual inductances of all three stator phase windings. It is also discussed

in section 4.3 that this is the main reactance (as indicated by superscript

“(m)”) because it is derived for the ideal machine where end parts, slots and

higher-order spatial harmonics of stator magnetic field are neglected. These

neglected (small) contributions to the overall reactance are accounted for

by the leakage reactance X`
1, which is added to the main reactance X

(m)
11

to get the total reactance of the stator (primary) winding:

X11 = X
(m)
11 +X`

1. (6.26)

By using the same line of reasoning that has been used for the derivation

of “rotating field” reactance X
(m)
11 , the following formula can be derived for

the main reactance of the rotor (secondary) winding:

X
(m)
22 =

12µ0b`

δ
fN2

2 k
2
w2, (6.27)
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where it is tacitly assumed that the rotor is at standstill and fr = f . For

the rotating rotor, f should be replaced by fr = sf .

As before, formula (6.27) is valid for the ideal machine. The total re-

actance of the rotor winding which accounts for contributions coming from

end parts, slots and higher-order spatial harmonics of rotor magnetic field

can be written as

X22 = X
(m)
22 +X`

2, (6.28)

where X`
2 is the secondary leakage reactance.

Next, we shall discuss the coupling reactance between the stator and

rotor windings. In doing so, we neglect coupling due to leakage magnetic

fields as a small effect and consider only the coupling due to rotating mag-

netic fields created by the stator and rotor windings. By almost literally

repeating the line of reasoning used in section 4.3 for the derivation of for-

mula (6.25) for reactance X
(m)
11 , the following formula can be obtained for

the “rotating magnetic field” coupling reactance:

X12 =
12µ0b`

δ
fN1N2kw1kw2. (6.29)

This reactance accounts for coupling between one phase of the stator wind-

ing and three phases of the rotor winding. And the other way around,

reactance X12 given by formula (6.29) accounts for coupling of one phase

of the rotor winding with three phases of the stator winding. This aggre-

gate nature of coupling represented by reactance X12 is the consequence of

it being computed by using rotating magnetic fields, i.e., fields created by

all three-phase stator (or rotor) currents. It is clear as before that, in the

case of the rotating rotor, frequency f in formula (6.29) should be replaced

by fr = sf . Finally, it must be remarked that formulas (6.25), (6.27) and

(6.29) are valid for two-pole machines. In the case when ν = p
2 > 1, δ must

be replaced by νδ in the mentioned formulas.

From formulas (6.25), (6.27) and (6.29), we find

X
(m)
11

X
(m)
22

= a2, (6.30)

X
(m)
11

X12
= a, (6.31)

X
(m)
22

X12
=

1

a
, (6.32)

where

a =
N1kw1

N2kw2
. (6.33)
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Now, we shall use per-phase analysis and write the coupled circuit equations

for stator and rotor windings in the form{
V̂1 = R1Î1 + jX11Î1 − jX12Î2,

0 = R2Î2 + jsX22Î2 − jsX12Î1.

(6.34)

(6.35)

In the written equation (6.34), the term R1Î1 accounts for voltage drop

across the resistance R1 of one phase (phase a, for instance) of the stator

winding; the term jX11Î1 accounts for the voltage induced in the same

phase by the rotating magnetic field of the stator; the term −jX12Î2 ac-

counts for the voltage induced in the same phase by the rotating magnetic

field of the rotor; finally, V̂1 is the phasor of the applied terminal voltage

for the same phase. The three terms in equation (6.35), written for one

phase (phase a, for instance) of the rotor windings have similar meaning.

Factor s in the last two terms of equation (6.35) indicates that this equa-

tion is written for the rotating rotor when the rotor currents have frequency

fr = sf , while reactances X22 and X12 are given by formulas (6.27) and

(6.29) for frequency f . Thus, by using the fact that the coupling between

six stator and rotor phase windings is caused by rotating magnetic fields of

the rotor and stator, this coupling can be fully described by two coupled

circuit equations (6.34) and (6.35). All subsequent discussion deals with

mathematical transformations of these equations. The first step in this di-

rection is to divide the equation (6.35) by s and to rewrite these equations

as follows: 
V̂1 = R1Î1 + jX11Î1 − jX12Î2,

0 =
R2

s
Î2 + jX22Î2 − jX12Î1.

(6.36)

(6.37)

The last two equations can be physically interpreted as coupled circuit equa-

tions for a standstill induction machine whose secondary (rotor) resistance

is equal to R2/s. Thus, any rotating induction machine can be reduced to

an equivalent standstill induction machine by the proper adjustment of its

secondary resistance.

The next step in the mathematical transformations of the coupled circuit

equations is to introduce the scaled rotor (secondary) current

Î ′2 =
1

a
Î2, Î2 = aÎ ′2. (6.38)

By replacing Î2 by Î ′2 in equations (6.36) and (6.37) and by multiplying the



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 321

Induction Machines 321

equation (6.37) by a, we find
V̂1 = R1Î1 + jX11Î1 − jaX12Î

′
2,

0 =
a2R2

s
Î ′2 + ja2X22Î

′
2 − jaX12Î1.

(6.39)

(6.40)

The next step of the transformations is to subtract and add the term

jaX12Î1 in equation (6.39) as well as to subtract and add the term jaX12Î
′
2

in equation (6.40). This leads to
V̂1 = R1Î1 + j(X11 − aX12)Î1 + jaX12

(
Î1 − Î ′2

)
,

0 =
a2R2

s
Î ′2 + ja2

(
X22 −

1

a
X12

)
Î ′2 + jaX12

(
Î ′2 − Î1

)
.

(6.41)

(6.42)

From formulas (6.26) and (6.31) we obtain

X11 − aX12 = X11 −X(m)
11 = X`

1. (6.43)

Furthermore, from equation (6.31) follows

aX12 = X
(m)
11 . (6.44)

From relations (6.28) and (6.32) we derive

X22 −
1

a
X12 = X22 −X(m)

22 = X`
2. (6.45)

Now, we introduce the scaled secondary resistance and scaled secondary

leakage reactance by using the following formulas, respectively:

R′2 = a2R2, (6.46)

a2

(
X22 −

1

a
X12

)
= a2X`

2 =
(
X`

2

)′
. (6.47)

By substituting formulas (6.43) and (6.44) into equation (6.41) and at the

same time substituting formulas (6.44), (6.46) and (6.47) into equation

(6.42), we arrive at the following form of the coupled circuit equations:
V̂1 = R1Î1 + jX`

1Î1 + jX
(m)
11

(
Î1 − Î ′2

)
,

0 =
R′2
s
Î ′2 + j

(
X`

2

)′
Î ′2 + jX

(m)
11

(
Î ′2 − Î1

)
.

(6.48)

(6.49)

Thus, by using equivalent mathematical transformations, we have reduced

the original coupled circuit equations (6.34)-(6.35) to the coupled equations

(6.48)-(6.49). The important outcome of these transformations is the fact

that equations (6.48)-(6.49) coincide with KVL equations for the electric
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Fig. 6.5

circuit shown in Figure 6.5. This circuit can be considered as an equiva-

lent circuit for an induction machine. This is so because this circuit and

the induction machine are described by mathematically equivalent sets of

equations. For this reason, the induction machine and the electric circuit

shown in Figure 6.5 are indistinguishable as far as the relations between

terminal voltages and terminal currents are concerned. In other words,

we can replace in a power network an induction machine by its equivalent

circuit without affecting currents and voltages in the network because in

both cases the network is described by mathematically equivalent sets of

equations.

It is interesting to point out that the equivalent circuit for an induction

machine is not unique. Indeed, coupled equations (6.41) and (6.42) have

been derived from the original coupled circuit equations (6.34) and (6.35)

by using equivalent mathematical transformations and the scaling (6.38).

Furthermore, by using formula (6.46) and notation

X ′22 = a2X22, (6.50)

equations (6.41) and (6.42) can be rewritten as follows:
V̂1 = R1Î1 + j(X11 − aX12)Î1 + jaX12

(
Î1 − Î ′2

)
,

0 =
R′2
s
Î ′2 + j (X ′22 − aX12) Î ′2 + jaX12

(
Î ′2 − Î1

)
.

(6.51)

(6.52)

The last two equations are valid for any value of scaling factor a, not only

when a is given by formula (6.33). The coupled equations (6.51) and (6.52)

coincide with the KVL equations for the electric circuit shown in Figure

6.6. Consequently, this electric circuit can be considered as an equivalent

circuit for the induction machine as well, and this is true for any choice

of scaling parameter a. The choice of a defined by formula (6.33) leads
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Fig. 6.6

to the exposure of the leakage reactances and this facilitates the further

development of the equivalent circuit as discussed below.

Now, we shall return to the discussion of the equivalent circuit shown

in Figure 6.5. In deriving this equivalent circuit, eddy current losses in

the stator and rotor cores were neglected. Usually, eddy current losses in

the rotor are quite small in comparison with eddy current losses in the

stator. This is so because classical eddy current losses are proportional

to the square of the frequency of the time-varying magnetic field. This

frequency in the rotor reference frame is fr = sf , and it is quite small

compared to the stator frequency f for normal operation of the induction

machine when slip s is quite small. Thus, we shall discuss only how eddy

current losses in the stator core can be accounted for in the structure of the

equivalent circuit shown in Figure 6.5. It has been shown in section 3.5 of

Part I that the eddy current losses are proportional to the square of peak

value of magnetic flux density B2
m in the ferromagnetic core:

Pe ∼ B2
m. (6.53)

On the other hand, B2
m is proportional to the square of magnetic flux peak

value which, in turn, is proportional to the square of peak value of the

voltage induced by this flux. In the equivalent circuit shown in Figure 6.5,

this voltage can be identified with the voltage Vm12 across terminals 1 and

2. Thus, it can be concluded that

Pe ∼ V 2
m12. (6.54)

The last formula suggests the idea of modeling eddy current losses in the

stator core of the induction machine as ohmic losses PRe in some equivalent

resistor Re connected across the terminals 1 and 2, that is, in parallel with

X
(m)
11 (see Figure 6.7). The rationale behind this idea is the fact that the
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Fig. 6.7

Fig. 6.8

ohmic losses in Re are also proportional to V 2
m12:

PRe =
V 2
m12

2Re
. (6.55)

The resistor Re can be chosen from the condition

Pe = PRe , (6.56)

which leads to

Re =
V 2
m12

2Pe
. (6.57)

The electric circuit shown in Figure 6.7 is the complete equivalent circuit

for an induction machine.

It is often convenient to deal with the approximate equivalent circuit ob-

tained from the circuit shown in Figure 6.7 by moving the parallel-connected

Re and X
(m)
11 directly across the primary terminals. Such an equivalent cir-

cuit is shown in Figure 6.8. Such a transformation of the equivalent circuit

is usually justified on the grounds that Re and X
(m)
11 are quite large. Con-

sequently, current Î1 − Î ′2 (see Figure 6.7) is small in magnitude. For this
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reason, current Î1 through R1 and X`
1 is almost equal to current Î ′2. More-

over, since R1 and X`
1 are small, the voltage across terminals 1 and 2 is

almost equal to V̂1. The mentioned facts are consistent with the structure

of the equivalent electric circuit shown in Figure 6.8. The parameters of

the approximate equivalent circuit can be experimentally determined by

using the no-load test (s ≈ 0) and locked-rotor test (s = 1). These tests are

similar to the open- and short-circuit tests for the transformer, respectively,

and the details are left as a useful problem for the reader.

In our discussion, we dealt with an induction machine with a wound ro-

tor. The case of a squirrel cage rotor is theoretically more complicated. The

reason is that the squirrel cage cannot be treated as a three-phase winding

but rather must be treated as a polyphase winding. The latter treatment

is based on the fact that the stator rotating magnetic field induces the cur-

rents in slot bars of the squirrel cage which all have the same magnitude

but are incrementally shifted in time with respect to one another by the

same angle dependent on the number of rotor slots. It can be shown that

these induced bar currents create uniformly rotating magnetic fields (as far

as their fundamental spatial harmonic is concerned), and the speed of this

field is given by the formula (6.22). This eventually leads to coupled circuit

equations similar to equations (6.34)-(6.35) and to an equivalent electric

circuit of the type shown in Figure 6.7. The detailed discussion of all these

issues is beyond the scope of this text.

6.3 Torque-Speed Characteristics of the Induction Motor

An induction motor is an electromechanical device which is used to convert

electrical energy supplied by a power network into mechanical energy of the

rotating rotor. In this section, we shall discuss mechanical characteristics

of the induction motor such as the mechanical torque on its rotor shaft

and the dependence of this torque on the rotational speed of the rotor.

The derivation of the mathematical expression for the mechanical torque

will be based on the equivalent circuit for the induction machine shown in

Figure 6.8. This equivalent circuit suggests that the total active power P2

transferred across the air gap to the rotor can be written as

P2 = 3 (I ′2)
2 R′2
s
, (6.58)

where the factor 3 is used to account for the three phases of the stator

winding and I ′2 is the rms value of Î ′2.
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By using formulas (6.38) and (6.46) in the last equation, we obtain

P2 = 3I2
2

R2

s
. (6.59)

The active power transferred to the rotor has two distinct components:

1) an active power Pheat2 which covers ohmic losses (heat dissipation) in

the rotor winding and 2) an active power P̃2 which is converted into the

mechanical power of the rotating rotor. Thus,

P2 = Pheat2 + P̃2. (6.60)

It is apparent that

Pheat2 = 3I2
2R2, (6.61)

and, consequently,

P̃2 = P2 − Pheat2 = 3I2
2

R2

s
− 3I2

2R2, (6.62)

which leads to

P̃2 = 3I2
2R2

1− s
s

. (6.63)

It is clear from the last formula that P̃2 > 0 in the motor regime when

0 < s < 1. It is also clear from the last formula that P̃2 < 0 if s < 0,

that is, when the rotor of the induction machine is driven by a prime mover

above synchronous speed nsyn. This change in the sign of P̃2 suggests that

the power is transferred from the rotor to the stator and that the induction

machine operates as a generator.

By using again formulas (6.38) and (6.46), equation (6.63) can be writ-

ten as

P̃2 = 3 (I ′2)
2
R′2

1− s
s

. (6.64)

Next, by using the equivalent electric circuit shown in Figure 6.8, we find

(I ′2)
2

=
V 2

1[
R1 +

R′2
s

]2

+
[
X`

1 +
(
X`

2

)′]2 , (6.65)

where V1 stands for the rms value of the stator voltage.

By substituting the last formula into equation (6.64), we obtain

P̃2 = 3V 2
1

R′2
1− s
s[

R1 +
R′2
s

]2

+
[
X`

1 +
(
X`

2

)′]2 . (6.66)
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It is known from classical mechanics that the mechanical power P̃2 of the

rotating rotor is related to the torque T applied to the rotor by the formula

P̃2 = TΩ, (6.67)

where, as before, Ω stands for the angular speed of the rotor.

Invoking formula (6.6), we find

Ω = (1− s)Ωsyn. (6.68)

Furthermore, from formulas (6.1) and (6.13) follows that

Ωsyn =
4πf

p
, (6.69)

which leads to

Ω = (1− s)4πf

p
. (6.70)

By substituting the last formula into equation (6.67), we obtain

P̃2 = T (1− s)4πf

p
. (6.71)

By using relation (6.66) in the last equation and solving for T , we derive

T (s) =
3p

4πf
V 2

1

R′2/s

[R1 +R′2/s]
2

+
[
X`

1 +
(
X`

2

)′]2 . (6.72)

This is the sought expression for the mechanical torque on the rotor shaft

of the induction machine. What follows next is the analytical study of this

expression and its physical interpretation.

It is apparent from the last formula that for very small s we have

T (s) ≈ 3p

4πf
V 2

1

s

R′2
, (6.73)

and in the limit of s→ 0 we find

T (0) = 0. (6.74)

The last equality is transparent from the physical point of view and mathe-

matically confirms that there is no rotor torque at synchronous speed nsyn.

From formula (6.72) we also find

Tstart = T (1) (6.75)
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and

Tstart =
3p

4πf
V 2

1

R′2

[R1 +R′2]
2

+
[
X`

1 +
(
X`

2

)′]2 , (6.76)

where Tstart stands for the starting torque when n = 0 and, consequently,

s = 1.

Usually, resistances of the rotor and stator windings are quite small.

For this reason,

R1 +R′2 � X`
1 +

(
X`

2

)′
, (6.77)

and formula (6.76) can be simplified as follows:

Tstart ≈
3p

4πf
V 2

1

R′2[
X`

1 +
(
X`

2

)′]2 . (6.78)

We shall next examine the torque T (s) as a function of s. To this end, we

introduce a new variable

y =
1

s
(6.79)

and represent the equation (6.72) in the form

T (y) =
Ay

By2 + Cy +D
, (6.80)

where the following notations are introduced:

A =
3p

4πf
V 2

1 R
′
2, (6.81)

B = (R′2)
2
, (6.82)

C = 2R1R
′
2, (6.83)

and

D =
[
X`

1 +
(
X`

2

)′]2
+R2

1. (6.84)

From formula (6.80) we find

dT (y)

dy
=
A(By2 + Cy +D)−Ay(2By + C)

(By2 + Cy +D)2
, (6.85)

which is reduced to

dT (y)

dy
=

A(D −By2)

(By2 + Cy +D)2
. (6.86)
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To find the extremum values of the torque, we consider the equation

dT (y)

dy
= 0. (6.87)

It is apparent from formula (6.86) that the last equality is satisfied for such

values of ym that

D −By2
m = 0. (6.88)

This leads to

ym = ±
√
D

B
. (6.89)

Taking into account formula (6.79), we conclude that the torque T (s)

achieves its extrema at the following values of s:

sm = ±
√
B

D
. (6.90)

By recalling formulas (6.82) and (6.84), we find

sm = ± R′2√
R2

1 +
[
X`

1 +
(
X`

2

)′]2 . (6.91)

By taking into account the inequality (6.77), from the last formula we

conclude

sm ≈ ±
R′2

X`
1 +

(
X`

2

)′ . (6.92)

It can be easily seen from formula (6.72) that the torque T (s) assumes its

maximum value at s = sm and its minimum value at s = −sm. Indeed,

T (s) > 0 for s > 0 and T (0) = T (∞) = 0. Since T (s) assumes only one

extremum value for s > 0, this extremum is the maximum of T (s). Since

T (s) < 0 for s < 0, similar reasoning leads to the conclusion that T (s)

assumes its minimum value at s = −sm. By using the last formula in equa-

tion (6.72) and by taking into account that R1 is quite small in comparison

with the leakage reactances, we easily derive the following expression for

the maximum Tm of T :

Tm = T (|sm|) ≈
3p

8πf

V 2
1

X`
1 +

(
X`

2

)′ . (6.93)
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Fig. 6.9

After the presented discussion, it is easy to plot the torque T (s) as a func-

tion of s. This plot is presented in a qualitative way in Figure 6.9. In

reality, |sm| is quite small because R′
2 is much smaller than X�

1 +
(
X�

2

)′
.

As is clear from this plot and formula (6.72), T (s) changes its sign with

the change in sign of s. This is consistent with the fact that for s < 0,

an induction machine operates as a generator and the torque T changes its

nature from being a driving torque in the motor regime (s > 0) to being

an impeding torque in the generator regime (s < 0).

It is customary to plot the torque T as a function of rotor speed n. To

do this, we shall use the relation

n = (1− s)nsyn (6.94)

which follows from formula (6.5). By using this relation and Figure 6.9,

we can easily replot T as a function of n for the motor regime as shown in

Figure 6.10. In this figure, nm is the rotor speed at which the torque T (n)

achieves its maximum value. According to (6.94),

nm = (1− |sm|)nsyn. (6.95)

Since, as discussed before, |sm| is quite small, we find that

nm ≈ nsyn. (6.96)

Now, suppose that the starting torque Tstart of the induction motor is larger

than the load torque Tload: Tstart > Tload. Then, the induction motor will
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get started and its speed will be increased until the equality between the

motor torque and the load torque is achieved at some speed n. It is clear

from Figure 6.10 that

nm < n < nsyn (6.97)

and this implies according to (6.96) that

n ≈ nsyn =
120f

p
. (6.98)

The last formula is the foundation of frequency control of speed of the

induction motor. By varying f , we shall vary nsyn and, consequently,

according to formula (6.98) we shall vary n.

Next, we shall point out that the operation point, where the equality

between T (n) and Tload is achieved, is stable. Indeed, suppose that as a

result of some temporary disturbance the speed of the induction motor is

reduced to n′. Then, since the motor torque T (n′) is larger than the load

torque, the rotor will be accelerated until speed n is achieved where the

motor torque and the load torque are the same. Similarly, suppose that as

a result of some temporary perturbations the speed of the induction motor

is increased to n′′. Then, since the motor torque T (n′′) is smaller than

the load torque, the rotor will be slowed down and the speed n is achieved

where the motor torque and load torque are the same. It is clear that

this reasoning is valid for any operational speed between nm and nsyn and,

consequently, the part of the mechanical characteristics T (n) between nm
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and nsyn is stable. By using similar reasoning, it can be shown that the

part of the mechanical characteristics T (n) between n = 0 and n = nm is

unstable.

Up to this point, we have discussed the operation of the induction mo-

tor when the starting torque is above the load torque. In the case when

Tstart < Tload, the induction motor cannot start. To remedy this situation,

the secondary resistance R2 (and consequently, R′
2) is increased. For wound

rotor machines, this is done by using external resistance which can be con-

nected to the rotor winding through brushes and slip rings. It is clear from

formula (6.78) that Tstart is increased with the increase in R′
2. It is also clear

from formula (6.93) that the maximum torque Tm does not change with the

increase of R′
2, however the speed nm at which this maximum is achieved is

reduced as is evident from formulas (6.92) and (6.95). This is illustrated by

Figure 6.11 where the mechanical characteristics T (n) are plotted for dif-

ferent values of the secondary resistance R′
2. It is clear from this figure that

for sufficiently large R′
2 (curve 1) starting torque can be achieved which is

larger than the load torque. As a result, the induction motor can be started

and achieve the speed n1. As the external resistance (and, consequently,

R′
2) is reduced, the torque-speed characteristics are changed (see curves 2

and 3), and the induction motor speed will be increased to n2 and, finally,

to n3. For squirrel cage rotor machines with double-cage or deep-bar de-

signs the same result is achieved due to the manifestation of the skin effect

(as discussed in the first section of this chapter). Indeed, for such machines,

the mechanical characteristics of torque versus speed deviate from what is
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shown in Figure 6.10 where the case of constant secondary resistance R′2
is illustrated. The above deviations are usually pronounced at low rotor

speeds when the skin effect in rotor conductors is strongly manifested and

results in the increase of the starting torque. For sufficiently high rotor

speeds, the skin effect is not exhibited and the mechanical characteristics

practically coincide with the curve in Figure 6.10.

In conclusion, the main features of the torque of induction machines can

be summarized as follows:

• All torques of induction machines are determined by leakage re-

actances. Thus, as in the case of transformers, leakage reactances

determine the quality of induction machines.

• All torques are proportional to the square of rms (or peak) value

of the primary voltage.

• The larger R′2, the larger the starting torque.

• The maximum torque does not depend on R′2.

• The operational speed of induction motors is very close to the syn-

chronous speed and this fact can be utilized for frequency control

of speed.

• The operational point always belongs to the stable part of

the torque-speed characteristics located between the synchronous

speed nsyn and the speed nm at which the maximum torque is

achieved.
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Problems

(1) What are the three main components of conventional utility power

systems?

(2) What are the main types of power plants and what are the energy

conversion processes performed at these power plants?

(3) Explain why high voltages are used for power transmission.

(4) Explain what the essence of utility industry deregulation is.

(5) Give a brief description of the structure of three-phase circuits and

define phase and line voltages. Explain what a neutral wire is useful

for.

(6) (a) Suppose that the lines and neutral of a three-phase circuit

are not marked but accessible for measurements. Explain how by

knowing the value of line voltage and by using only two voltmeter

measurements the neutral can be identified. (b) Consider the split-

phase method currently often used in the US for final distribution

of ac power to residential loads. In this method, the primary wind-

ing of a load single-phase transformer is fed by an ac voltage from

the utility distribution system. The transformer’s secondary wind-

ing is tapped in the center, which makes available a center-tap

connection in addition to the two terminals of the secondary wind-

ing. Typically, the voltage measured between either of the two

secondary terminals to the center tap is about 120 V rms and in

such case the voltage between the two secondary terminals is 240 V

rms. In the case when the three wires are not marked, explain how

the center-tap wire can be identified by using two voltage mea-

surements. What is the phase shift between the voltages measured

between each secondary winding terminal and the center tap?

(7) Describe the essence of per-phase analysis of three-phase circuits

with balanced loads.

335
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Fig. P.1

(8) Describe how the delta connection of three-phase voltages can be

equivalently transformed into star connection of three-phase volt-

ages.

(9) Perform the analysis (i.e., find all branch currents) of a three-phase

circuit with delta connections of sources and loads (see Figure P.1).

(10) Draw the plots of p(t) (see formula (1.64)) for two cases: 1) when

the power factor (cosϕ) is adjusted to one and 2) when the power

factor is not adjusted to one. By using these two plots explain the

difference in energy consumption for the above two cases.

(11) Draw the phasor diagrams for the electric circuit in Figure 1.13b

in the cases when the power factor is adjusted and not adjusted to

one.

(12) By using the phasor diagram from the previous example, derive

formula (1.83) for the capacitance that results in adjustment of

power factor to one.

(13) Explain two beneficial effects of leading power factor (ϕ < 0).

(14) Prove that the sum of two wattmeter measurements (see Figure

P.2) gives the total active power supplied to the load.

(15) What are the most typical power line faults and why is their anal-

ysis important?

(16) Describe the algorithm of using the Thevenin theorem for fault

analysis.
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Fig. P.2

(17) By using the Thevenin theorem, analyze the SLG fault in a three-

phase circuit (see Figure 2.4) when the node O′ is grounded and the

grounding impedance is neglected (assumed to be equal to zero).

(18) Solve problem 17 when the grounding impedance Z ′n of node O′ is

not equal to zero. (Hint: use delta-to-star transformation on the

second step.)

(19) By using the Thevenin theorem, carry out the analysis of LL fault

(see Figure 2.7a) when nodes O′ and O are grounded through

impedances Z ′n and Zn. (Hint: use delta-to-star transformation

on the second step.)

(20) By using the Thevenin theorem, carry out the analysis of DLG

fault (see Figure 2.10a) by using the steps described in the text.

(21) Summarize concisely the definition of symmetrical components and

their mathematical relations with the three-phase quantities they

represent.

(22) Prove formula (2.83).

(23) Prove formula (2.86).

(24) Draw sequence networks for two distinct cases, when the center O′

of star connection of three-phase voltage sources is grounded, and

when it is not grounded.

(25) State the general algorithm of using sequence networks in fault

analysis.

(26) By using the sequence networks, carry out the analysis of SLG fault

in the case when node O′ is grounded through zero impedance.

(27) By using the sequence networks, carry out the analysis of DLG fault

(see Figure 2.24) in the case when node O′ is grounded through zero

impedance.

(28) Complete the analysis of LL fault (see Figure 2.26) described in

the text.
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(29) Describe the basic design and the principle of operation of single-

phase transformers. Explain for what transformers are used.

(30) Define an ideal transformer and describe its terminal relations and

equivalent circuit.

(31) Consider an ac transmission line with a characteristic impedance

Z0 of 100 Ω to which you want to connect a resistive load with

R = 25 Ω. How could you use a transformer to maximize the

power transfer to the load?

(32) Explain what leakage inductances are and why they are important

as far as the operation of transformers is concerned.

(33) Summarize the main steps used in the mathematical transforma-

tion of the coupled circuit equations in order to arrive at the equiv-

alent circuit of the transformer.

(34) Draw the equivalent circuit of the nonideal transformer and de-

scribe the meaning of each parameter in the equivalent circuit.

(35) Is the equivalent circuit unique?

(36) Draw the simplified equivalent circuit of the transformer that is

used in the power system analysis.

(37) Describe the open- and short-circuit tests used for the identifica-

tion of parameters of the (approximate) equivalent circuit of the

transformer.

(38) Suppose the open- and short-circuit tests were performed for a

transformer with a rated rms voltage of 120 V and rated rms cur-

rent of 10 A and the following values were obtained, respectively:

Poc = 10 W, I1 = 1 A, V2 = 240 V; Psc = 60 W, V1 = 7 V. Find the

approximate equivalent circuit model parameters. Explain if the

assumptions made in obtaining the approximate equivalent circuit

model are reflected in the values you obtain.

(39) Suppose you have characterized the approximate equivalent circuit

corresponding to an actual transformer. What power losses are

described by this circuit and how are they modeled? How would

you compute these losses using the circuit model if the transformer

drives some arbitrary load within its rating?

(40) How could you compute a transformer’s efficiency (the ratio of

secondary to primary power) for a given load from the knowledge

of the transformer’s equivalent circuit and the losses it models?

(41) Describe various designs (i.e., various core configurations and var-

ious connectivities of primary and secondary windings) of three-

phase transformers.
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(42) Derive the expressions for the ratio of primary and secondary line

voltage phasors for each of the following three-phase transformer

connectivities: a) star-star, b) star-delta, c) delta-star and d) delta-

delta.

(43) Which of the connectivities in problem 42 gives the highest sec-

ondary line voltage for a given primary line voltage and turns ratio?

Explain.

(44) Describe the design and principle of operation of synchronous

(cylindrical rotor and salient pole) generators.

(45) What is synchronism? Define and explain the significance of syn-

chronous speed for the performance of synchronous generators.

Why is a synchronous generator a (P, V )-source?

(46) Explain how the rotating magnetic field can be created by the

stationary three-phase stator winding.

(47) Demonstrate that negative-sequence three-phase stator currents

create mmf and magnetic fields rotating with speed nsyn in the

direction opposite to the rotor rotation.

(48) By using the language of symmetrical components, explain what

happens to synchronous generators in the case of unbalanced loads.

Why are such loads undesirable?

(49) Explain how in the case of unbalanced loads the negative effect of

the zero sequence of stator currents can be eliminated.

(50) Describe the main principles of stator winding design. Explain how

it is achieved that the stator winding serves as a filter of higher-

order spatial and temporal (time) harmonics.

(51) Construct an occupation diagram for a two-layer full-pitch stator

winding with 18 slots on the stator.

(52) How is the occupation diagram in the previous example modified

in the case of fractional-pitch winding?

(53) Explain what the (main) synchronous reactance of the stator wind-

ing is and how it is related to self and mutual reactances of the

phase windings. How does this reactance depend on the air gap

length?

(54) Describe and explain the open- and short-circuit tests for experi-

mental identification of synchronous reactance.

(55) Describe the essence of the two-reactance theory for salient pole

machines.

(56) What is the load angle? Explain its significance.
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(57) What is the limit of static stability of a synchronous generator?

Explain why the air-gap length of synchronous generators is usually

large.

(58) Consider a cylindrical rotor synchronous generator connected to

the three-phase power grid, which maintains the constant terminal

voltage (infinite bus). Describe what happens to the magnitude

of the internal voltage (emf) as the rotor dc winding current is

increased from a small value up to some maximum allowed value.

(59) For the situation described in problem 58, describe what happens

to the stator current and the power factor as the rotor dc winding

current is changed and the generated active power is maintained

constant. Draw and explain the corresponding phasor diagrams.

(60) Define generator buses and load buses and state the essence of

power flow analysis.

(61) State two equivalent forms of the final power flow equations. Ex-

plain the cause of nonlinearity of these equations. Explain if all of

these equations are coupled or not.

(62) State the algorithm of Newton-Raphson iterations for the solution

of general nonlinear equations. What is the main mathematical

idea of these iterations? Is the convergence of these iterations local

or global? What is the rate of convergence?

(63) Construct a graphical example (different than in the text) when

Newton-Raphson iterations do not converge.

(64) Describe the Newton-Raphson iterations in the case of power flow

equations.

(65) Describe the central idea and main formulas of the continuation

technique.

(66) Describe the continuation technique for power flow equations when

the parameter is introduced in active and reactive powers of load

buses to solve the problems for various load configurations.

(67) State and explain the “swing” equation for rotor dynamics of a

synchronous generator.

(68) Explain how the “swing” equation can be written in the Hamilto-

nian form and how this form can be used for the construction of

the phase portrait.

(69) Explain what the “saddle” point and the separatrix of rotor dy-

namics are and what their significance is.

(70) State the algebraic criterion of stability of rotor dynamics in terms

of the values of the Hamiltonian at initial conditions and at the

saddle point.
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(71) Demonstrate the equivalence of the algebraic stability criterion of

problem 70 and the classical “equal area” stability condition.

(72) What is the physical effect of eddy currents induced in generator

solid rotors on the stability of rotor dynamics? How can these

currents be accounted for and what is their effect on time variations

of the Hamiltonian?

(73) Describe the basic design and principle of operation of induction

machines as motors and generators.

(74) What is “slip” and what is the relation between the frequencies of

rotor and stator currents? Give the range of slip variations in the

motor and generator regimes.

(75) Explain why the air gap length in induction machines is usually

very small.

(76) Explain how a doubly-fed induction machine can be operated as a

generator. In what type of power plants are induction generators

utilized?

(77) Explain how the electromagnetic coupling between stator and rotor

windings realized through rotating magnetic fields leads to the sim-

plification of the coupled circuit equations. Explain the physical

meaning of the reactances in the coupled circuit equations.

(78) Describe the main steps of mathematical transformation of the cou-

pled circuit equations that are used in the derivation of the equiv-

alent circuit for the induction machine. Is the equivalent circuit

unique?

(79) Describe how the no-load test and locked-rotor test can be used

for the identification of parameters of the approximate equivalent

circuit.

(80) Give the formula and draw the graph for the torque-speed charac-

teristics of induction machines for unlimited variation of speed in

both directions. What parts of these characteristics are stable and

unstable?

(81) Explain what the relation between the mechanical speed of the

induction motor and the speed of the rotating magnetic field of the

stator winding is. What does this relationship imply for the control

of induction motor speed?

(82) What is the starting torque and how can it be controlled for wound

rotor induction motors?

(83) Explain what physical phenomenon is utilized for the increase in

the starting torque in the case of the squirrel cage rotor induction
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motor. Explain what kinds of designs of squirrel cage rotors are

used for starting torque increase.

(84) Suppose you are told that a particular induction machine has a

speed of 1100 RPM at its rated load torque. Assuming the line

frequency is 60 Hz, how many poles does this machine have?

(85) Suppose you have a three-phase induction machine at rest (n = 0)

with rated line-to-line voltage of 208 V and you have connected a

variable magnitude three-phase ac supply to its stator terminals.

As you steadily increase the stator voltage from 0 V, you notice

that the rotor starts to spin when you reach about 50 V. Why

might this occur? What does the stator voltage magnitude control

in the induction machine?

(86) Suppose that two distributed stator windings are angularly shifted

with respect to one another along the stator circumference by 90◦

and driven by ac currents of the same peak value and frequency but

shifted in time by 90◦. Show that this two-phase winding produces

a uniformly rotating magnetic field.

(87) A single-phase winding when driven by ac current produces a puls-

ing magnetic field. Prove that this pulsing magnetic field can be

equivalently described as the superposition of two uniformly ro-

tating magnetic fields with the same speed but opposite rotation

directions. What is the speed of rotation of these fields?

(88) Induction motors can also be constructed to be driven by single-

phase ac power and these machines are called single-phase induc-

tion motors. Using the fact described in the previous problem,

graphically derive a generic plot of the single-phase induction motor

torque-speed characteristics from those of the three-phase induc-

tion machine. How do the single-phase induction motor mechanical

characteristics compare with the three-phase induction motor char-

acteristics as far as the starting torque is concerned?

(89) One common design of a single-phase induction machine incorpo-

rates another (auxiliary) stator winding which is electrically ex-

cited in parallel with the main single-phase winding. This auxiliary

winding is designed in such a way as to give the single-phase induc-

tion machine a nonzero starting torque. Describe the geometrical

and electrical characteristics of the auxiliary starting winding nec-

essary for the single-phase induction machine to start itself when

the main and auxiliary windings are excited in parallel by a single-

phase ac voltage source. Explain the usefulness of constructing the

auxiliary winding with a series capacitor.
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Chapter 1

Power Semiconductor Devices

1.1 Introduction; Basic Facts Related to Semiconductor

Physics

This part of the book is concerned with power electronics. Power electronics

can be defined as the area of electrical engineering which deals with the

design of electric circuits that use semiconductor devices as switches to

convert electric power from one (available) form into another (desired) form.

Such circuits are called power converters. It is clear that these converters

are switching-mode devices. In this sense, power electronics is similar to

digital electronics where semiconductor devices are also used as switches but

for different purposes such as storage, processing and transmission of digital

information. Furthermore, another important difference is that in power

electronics semiconductor devices are used as switches with high current

and high voltage-handling capabilities. Switching of semiconductor devices

in power converters inevitably results in ripples in voltages and currents,

and these ripples are suppressed by using energy storage elements such as

inductors and capacitors. It turns out that there exists a trade-off between

the switching speed of semiconductor devices and the size of energy storage

elements. Namely, the faster the switching of semiconductor devices, the

smaller the energy storage elements needed for suppression of ripples. This,

in turn, results in more compact, lighter and cheaper power electronics

converters. Thus, the progress in semiconductor device technology leading

to faster semiconductor switches of high currents and high voltages is very

beneficial to the progress in power electronics.

It is well known that ac and dc are the two most prevalent forms of

electric power. For this reason,the following four types of power converters

are often encountered in power electronics applications:

345
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• ac-to-dc converters (called rectifiers),

• dc-to-ac converters (called inverters),

• dc-to-dc converters (called choppers),

• ac-to-ac converters.

In this book we shall study these converters and we will be mostly concerned

with their steady-state performance, that is, the performance for which the

power converters were designed. Due to the switching-mode nature of power

converters, the analysis of their steady-state performance is reduced to the

analysis of steady states in electric circuits driven (excited) by periodic

non-sinusoidal voltage sources. The methods of analysis of such electric

circuits are discussed in detail in Chapter 2 of Part I of this book, and

these methods will be extensively used in our forthcoming study of power

converters. In this study, we shall also use some facts from magnetics that

are presented in Chapter 3 of Part I as well as some background material

related to three-phase circuits and transformers discussed in Part II.

Power electronics is an enabling technology which has already found nu-

merous applications in very diverse areas of engineering. Just to name but a

few, power electronics is indispensable in integrating such renewable energy

sources as wind and solar into existing power systems; it plays the central

role in the construction of HVDC (high voltage dc) transmission lines; it

is at the very foundation of the development of semiconductor drives; it is

the critical technology in the design of new and efficient hybrid and electric

cars; it enables the development of uninterruptible power supplies (UPS)

to provide backup electric power to various loads in the case of emergency;

power electronics converters can be found in many consumer devices such

as televisions, personal computers, battery chargers, etc.

As mentioned above, the use of semiconductor devices as switches is at

the very foundation of power electronics. For this reason, this chapter is

concerned with the discussion of the designs and principles of operation of

basic semiconductor devices and their utilization as switches. To proceed

with this discussion, we shall first review in this section the basic facts

related to semiconductor physics.

We shall begin with the discussion of intrinsic (pure) semiconductors.

They are made up of a huge number of atoms which consist of heavy positive

nuclei surrounded by light negative electrons. These nuclei form a rigid

periodic lattice which is essentially “frozen” at very low temperatures. As

temperature is raised, the atoms exhibit thermal vibrations about their

equilibrium (mean) positions. All electrons can be subdivided into two
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Fig. 1.1

distinct groups. There are electrons which are tightly bound to nuclei

and can be naturally regarded as part of the lattice. They are referred

to as “core” electrons. There are, however, electrons that are spread out

over the entire semiconductor. They are referred to as “valence” or mobile

electrons. The transport of these mobile electrons results in electric current

conduction.

According to quantum mechanics, the energy spectrum of valence elec-

trons in perfectly periodic (frozen) crystals can be described in terms of

so-called Bloch states, and this spectrum exhibits band structure. This

means that not all energy values (levels) are permissible and those which

are permissible are grouped into bands. In each band there are very many

permissible energy levels (states) which are separated from one another by

very small energy increments, while the bands may be separated by appre-

ciable energy gaps. As far as the transport of electrons in semiconductors

is concerned, two bands of high energy are most important. They are the

valence band (VB) all of whose energy levels are occupied by electrons at

zero temperature, and the next in increasing energy and completely empty

of electrons is the conduction band (CB). These two bands are separated

by energy gap εg. This is schematically represented by Figure 1.1.

For silicon (Si), which is still the main material for semiconductor de-

vices,

εg = 1.1 eV. (1.1)

For applications in power electronics, wide bandgap semiconductors are

very attractive and promising. Examples of wide bandgap semiconductors
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include silicon carbide (SiC) with

εg = 3.2 eV (1.2)

and gallium nitride (GaN) with

εg = 3.4 eV. (1.3)

Such high energy gaps lead to appreciably higher breakdown electric fields,

which is beneficial for the operation of semiconductor devices at high volt-

ages. Furthermore, large energy bandgaps also result in much higher oper-

ating temperatures and higher radiation hardness. The former is important

for the operation of semiconductor devices at high currents and voltages.

When the temperature of semiconductors is gradually increased above

zero, then some electrons in the valence band may acquire sufficient energy

from the thermally vibrating lattice to make transitions across the energy

gap into the conduction band. As a result, some “vacancies” are formed in

the valence band. These vacancies are usually referred to as holes. Such

electron-hole pair production in a pure semiconductor is called intrinsic

electron-hole pair generation and is schematically shown in Figure 1.1. It

is apparent that the simultaneous production of electrons and holes results

in equal density of electrons and holes,

n = p = ni, (1.4)

where n stands for electron density, p stands for hole density, while ni is

called intrinsic density (concentration). This density depends on tempera-

ture and for Si at room temperature

ni = 1.45 · 1010 cm−3. (1.5)

It must be remarked that the electric current conduction in semiconduc-

tors is due to the transport of conduction band and valence band electrons.

However, the transport properties of conduction band electrons are quite

different from transport properties of valence band electrons. To distin-

guish between these two transports, the notion of an imaginary and posi-

tively charged particle, a hole, is introduced in semiconductor physics, and

the actual transport of valence band electrons is described (is modeled) as

transport of holes.

In the design of semiconductor devices, extrinsic semiconductors are

used. These semiconductors are doped. The latter means that specific

impurities are intentionally introduced in semiconductors by means of ion

implantation (or other fabrication techniques). Introduced impurities re-

sult in localized energy levels within the energy gap. Usually, “shallow”
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impurities are used for doping which result in energy levels close to the

boundaries of the energy bandgap. When the impurity energy levels are

close to the lower edge of the conduction band (see Figure 1.2), they are

called “donor” levels and at very low temperatures these energy levels are

completely occupied by electrons. Impurities whose implantation results in

such energy levels are called donors, and for Si such impurities are phos-

phorus (P) and arsenic (As). As temperature is slightly increased, electrons

occupying donor energy levels acquire enough energy from thermal lattice

vibrations to make transitions to the conduction band. This results in

the appearance of mobile conduction band electrons and positively charged

(ionized) immobile impurities. On the other hand, when impurity energy

levels are close to the upper edge of the valence band (see again Figure

1.2), they are called acceptor levels and at very low temperatures these

energy levels are not occupied by electrons. Impurities whose implantation

results in such energy levels are called acceptors, and for Si such impurities

are boron (B) and aluminum (Al). As temperature is slightly increased,

electrons from the valence band acquire enough energy from thermal lat-

tice vibrations to make transitions to acceptor energy levels. This results

in appearance of mobile holes in the valence band and negatively charged

(ionized) immobile impurities. It is clear from the presented discussion that

doping and thermal ionization of impurities may result in production of a

specific type of carriers in chosen regions. Indeed, if some regions of semi-

conductors are doped by donor impurities, then in these regions as a result

of thermal ionization we have inequality

n > p, (1.6)
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Fig. 1.3

and such regions are called n-type (or n+-type if n � p). On the other

hand, if some regions of semiconductors are doped by acceptors, then in

these regions

p > n (1.7)

and such regions are called p-type (or p+-type if p� n).

It can be shown that, regardless of the nature of doping, at equilibrium

np = n2
i . (1.8)

It is clear from the previous discussion that in doped semiconductors there

are two distinct mechanisms of mobile carrier (electron or hole) production:

an intrinsic mechanism associated with transitions of electrons across the

entire energy bandgap and resulting in simultaneous and equal production

of electrons and holes; and an extrinsic mechanism associated with ther-

mal ionization of shallow impurities resulting in production of electrons or

holes. The interplay of these two mechanisms is illustrated by a plot of

electron density versus temperature for n-type Si shown in Figure 1.3. A

similar plot can be drawn for hole density in the case of p-type Si. It is

apparent from this plot that there are three distinct regions: the ioniza-

tion region (0 K < T < 100 K) with rapid growth of electron density in

the conduction band due to thermal ionization of donor impurities, the ex-

trinsic region (100 K < T < 500 K) with more or less constant electron

density and the intrinsic region (T > 500 K) with rapid growth in electron
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density due to the intensified intrinsic process for sufficiently large temper-

atures. The extrinsic region where electron density is practically constant

and does not depend on temperature is usually a desired region for oper-

ation of semiconductor devices. It is apparent on physical grounds that

this region will be extended to appreciably higher temperatures for wide

bandgap semiconductors, which is one of their attractive features.

It is clear from the presented discussion that in semiconductors there

are two types of mobile carriers and two types of immobile ionized im-

purities. Consequently, we can talk about volume charge density ρ inside

semiconductors,

ρ = q(p− n+N), (1.9)

where q is the absolute value of electron charge, while

N = Nn −Np, (1.10)

with Nn being the density of ionized donors and Np being the density of

ionized acceptors. By neglecting magnetic field effects associated with the

transport of mobile carriers, we shall characterize the effect of charges only

by electric field E. This field can be represented as the gradient of scalar

potential ϕ,

E = −∇ϕ, (1.11)

and this leads in the usual way to the Poisson equation

∇2ϕ = −ρ
ε
, (1.12)

or, taking into account formula (1.9),

∇2ϕ =
q

ε
(n− p−N), (1.13)

where ε = 11.7ε0 for Si.

It must be noted that electron (n) and hole (p) densities in the Poisson

equation (1.13) are not known beforehand and these densities are dependent

on transport of mobile carriers in semiconductor devices. As far as this

transport is concerned, electron and hole currents in semiconductors are

due to two distinct physical mechanisms: drift and diffusion. Accordingly,

the electron and hole current densities can be written as follows:

Jn = Jdriftn + Jdifn , (1.14)

Jp = Jdriftp + Jdifp , (1.15)

where the meanings of subscripts and superscripts are self-explanatory.
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Fig. 1.4

The drift mechanism of current conduction in semiconductors is quite

similar to the mechanism of current conduction in conductors. Namely, an

existing electric field accelerates holes and electrons along the field direc-

tion and opposite to it, respectively. This accelerated motion is impeded

by scattering from random lattice vibrations and impurities. The average

effect of this scattering results in electrons and holes attaining some av-

erage velocity proportional to the local electric field E. This leads to the

following expressions for drift currents:

Jdriftn = qµnnE, (1.16)

Jdriftp = qµppE, (1.17)

where µn and µp are mobilities of electrons and holes, respectively. The

positive sign in equation (1.16) can be explained as follows. Since electrons

are negatively charged, they move in the direction opposite to electric field

E. However, the motion of negative charges in the direction opposite to E

is equivalent to positive electric current in the direction of E.

The diffusion mechanism of current conduction is of stochastic origin

and it is caused by the random nature of scattering. Macroscopically, it

manifests itself in the motion of carriers from high density regions to low

density regions. This mechanism can be illustrated as follows. Consider

two adjacent regions R1 and R2 of semiconductor (see Figure 1.4) with

different hole densities p1 and p2, assuming for certainty that p1 > p2.

Consider also that there exists electric field E parallel to the interface S

between R1 and R2 that causes drift transport of holes parallel to S. Then,

due to the random component of hole motion in the direction perpendicular

to E, some holes from region R1 cross S into region R2 and some holes from

R2 cross S into R1. However, since p1 > p2, a larger number of holes (on
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average) cross S from R1 to R2 than the other way around. This results in

a net influx of holes into R2 and produces the component of hole current

through S in the direction from high hole density region to low hole density

region. This is the diffusion current, and it is clear that it is controlled by

the gradient in hole density. Mathematically, it is expressed as

Jdifp = −qDp∇p, (1.18)

where Dp is the hole diffusion coefficient (diffusivity), while the minus sign

indicates that the hole diffusion current is directed opposite to the gradient

direction, that is, from high density to low density regions.

Similarly, electron diffusion current density can be written as

Jdifn = qDn∇n, (1.19)

where Dn is the electron diffusion coefficient and positive sign indicates that

the electron diffusion current is in the direction of the gradient because neg-

atively charged electrons diffuse in the opposite direction to ∇n. Diffusion

currents play a crucial role in the performance of many semiconductor de-

vices. These currents are engineered by doping differently adjacent parts

of semiconductor devices.

Now, by combining formulas (1.14)-(1.19), we arrive at the following

expressions for total electron and hole current densities:

Jn = qµnnE + qDn∇n, (1.20)

Jp = qµppE− qDp∇p. (1.21)

It turns out that there is the following remarkable relation between mobil-

ities and diffusivities called the Einstein relation:

−Dn

µn
=
Dp

µp
=
kBT

q
, (1.22)

where kB = 1.38 · 10−23 joule/K is the Boltzmann constant and, as before,

q = 1.6 · 10−19 coulomb is the absolute value of electron charge.

The quantity

VT =
kBT

q
(1.23)

has the dimension of voltage, and it is called thermal voltage. At room

temperatures,

VT = 0.026 V. (1.24)

Thermal voltage plays an important role in the theory of semiconductor

devices.
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The Einstein relation can be derived as follows. Consider equilibrium

conditions in semiconductors when net electron and hole current densities

are equal to zero:

Jn = 0, (1.25)

Jp = 0. (1.26)

From equations (1.11), (1.21) and (1.26) we derive

µpp∇ϕ+Dp∇p = 0, (1.27)

which leads to

µp
Dp
∇ϕ+

∇p
p

= 0 (1.28)

or

∇
(
µp
Dp

ϕ+ ln p

)
= 0. (1.29)

By integrating the last equation, we find

p = Ce
− µp
Dp

ϕ
. (1.30)

On the other hand, the Boltzmann distribution is valid for p at equilibrium

conditions:

p = Ce
− εp
kBT = Ce

− qϕ
kBT . (1.31)

The last two equations will be identical if

Dp

µp
=
kBT

q
. (1.32)

By using the same line of reasoning, the Einstein relation can be established

for electrons. Finally, it is worthwhile to note that the Einstein relations

are often called in literature fluctuation-dissipation relations. The reason is

that these relations establish connection between fluctuations in the motion

of mobile carriers described by diffusivity (D) and dissipation described by

mobility (µ).

Other important physical phenomena which occur in semiconductors are

generation and recombination of mobile carriers, i.e., electrons and holes.

There are several mechanisms of recombination and generation. Below, we

briefly consider only two of them: indirect or Shockley-Read-Hall (SRH)

recombination-generation and Auger (or three-particle) recombination-gen-

eration.

SRH recombination-generation is dominant for indirect bandgap semi-

conductors such as Si and SiC. The term “indirect bandgap” means that
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Fig. 1.6

the electron energy ε(k) as a function of its momentum (crystal momentum,

to be precise) k achieves its minimum for the conduction band (CB) and

its maximum for the valence band (VB) for different values of k. This is

illustrated by Figure 1.5. The latter means that the most probable direct

transitions (i.e., transitions with small changes in energy) from the states

near the lower energy edge of the conduction band to the states near the

upper energy edge of the valence band are prohibited because they cannot

be realized with the conservation of momentum k. For this reason, the

most probable transitions between the valence and conduction bands in in-

direct semiconductors occur through localized energy states (energy levels)

created in the middle of the bandgap by implantation of so-called “deep”

impurities (gold, for instance). The physical mechanism of such transitions

is illustrated by Figure 1.6. During the recombination process, an electron
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Fig. 1.7

is captured by an empty trap and almost simultaneously a hole is captured

by an electron from a filled trap. The inverse process, generation, consists

of almost simultaneous transitions of an electron from the valence band to

an empty trap and an electron from an occupied trap to the conduction

band. The following formula can be derived for the rate R(SRH)(n, p) of

this recombination-generation process:

R(SRH)(n, p) =
np− n2

i

tp(n+ n1) + tn(p+ p1)
, (1.33)

where tp and tn are hole and electron lifetimes, while n1 and p1 are some

constants.

Now, we consider Auger recombination-generation, which is quite active

for high doping levels. The physical mechanism of Auger recombination-

generation is illustrated by Figures 1.7a and 1.7b. It is clear from these fig-

ures that three particles participate in each elementary process. In the case

of generation, an electron from the valence band absorbs energy emitted

by an energetic electron (or hole) and makes a transition to the conduction

band. This generation process can also be viewed as an impact ionization

process where energetic mobile carriers cause generation of electron-hole
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pairs. In the case of recombination, an electron in the conduction band

makes a transition to the valence band and the released energy is trans-

ferred to an electron (in n-type material) or to a hole (in p-type material).

The following formula can be derived for the rate R(Au)(n, p) of the Auger

recombination-generation process:

R(Au)(n, p) = (np− n2
i )(αnn+ αpp), (1.34)

where αn and αp are Auger constants.

The transport of electrons and holes in semiconductors is governed by

the following continuity equations which express the balance of electrons

and holes:

∂n

∂t
=

1

q
div Jn −R(n, p), (1.35)

∂p

∂t
= −1

q
div Jp −R(n, p). (1.36)

These equations state that in any infinitesimally small volume the time

variation of mobile carrier density is due to local inflow (or outflow) of

carriers due to their drift and diffusion currents as well as due to local

recombination-generation of carriers.

These current continuity equations together with the Poisson equation

(1.13) and formulas (1.20) and (1.21) for electron and hole currents con-

stitute three coupled partial differential equations for n, p and ϕ. These

coupled equations are the essence of the drift-diffusion model for electron

and hole transport in semiconductors. This drift-diffusion model is widely

used for analytical and numerical analysis of semiconductor devices. For

very small (nanoscale) devices this drift-diffusion model is replaced by more

accurate and relevant models such as semiclassical transport or quantum

transport models. Discussion of these models is beyond the scope of this

text.

In summary, there are two types of mobile carriers in semiconductors,

electrons and holes, whose transport occurs within conduction and valence

bands, respectively. There are two distinct mechanisms of current conduc-

tion, drift and diffusion. There are phenomena of recombination-generation

caused by transition of mobile carriers across energy bandgaps or some parts

of them. The transport of carriers is described by coupled continuity and

Poisson equations which constitute the drift-diffusion model.
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Fig. 1.8

1.2 P-N Junctions and Diodes

In this section, we shall discuss p-n junctions and their use as diodes. These

junctions are ubiquitous in semiconductor electronics because most semi-

conductor devices utilize at least one junction between n-type and p-type

materials. For this reason, one may say that p-n junctions are among the

main building blocks of semiconductor devices. These p-n junctions are

fundamental in carrying out such functions as rectification, switching, am-

plification, etc.

A simple p-n junction can be viewed as a piece of semiconductor with

two adjacent p-type and n-type regions (see Figure 1.8). It will be assumed

in our discussion that these p-type and n-type regions are uniformly doped

(abrupt junction). Namely, the densities of ionized impurities can be plot-

ted as shown in Figure 1.9. Since these two differently doped regions are

adjacent to one another, electrons tend to diffuse from the n-type region to

the p-type region, while holes tend to diffuse from the p-type region into

the n-type region resulting in nonzero diffusion currents. Immediately the

question can be asked how equilibrium conditions (i.e., when electron and

hole current densities are equal to zero) can be realized in such junctions.

It is clear that such equilibrium conditions can be achieved only if these dif-

fusion currents are counterbalanced by drift currents. These drift currents

can be created when the depletion region is formed. The latter means that

a narrow region around the interface between n-type and p-type materials

is depleted of mobile carriers. As a result, the positive and negative charges

of ionized impurities are exposed and these charges create nonzero electric
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Fig. 1.10

field E that drives electrons and holes in directions opposite to the direc-

tions of their diffusion. Indeed, as seen from Figure 1.8, holes are driven

by electric field E back to the p-type region, while electrons are driven by

the same field back to the n-type region.

It is important to stress that the physical mechanism of depletion region

formation is diffusion of mobile carriers. Indeed, holes and electrons will

continue to diffuse into n-type and p-type regions, respectively, and recom-

bine there until sufficiently strong electric field E is established as a result

of mobile carrier depletion and this field counteracts the above diffusion.

Outside the depletion region, there are two charge neutral regions (see

Figure 1.8) where

ρ = q(p− n+N) = 0. (1.37)

Thus, the plot of volume charge density can be drawn as shown in Fig-

ure 1.10. This plot corresponds to the depletion approximation when it is
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Fig. 1.11

Fig. 1.12

assumed that the region −xp < x < xn is completely depleted of mobile

carriers. Next, we shall plot the graphs for electric field E and electric

potential ϕ. In doing so, we shall use the relations

dE

dx
=
ρ

ε
, (1.38)

E = −dϕ
dx
. (1.39)

From formula (1.38) and the plot shown in Figure 1.10 follows that E is

piecewise linear in the depletion region and it is equal to zero outside this

region (see Figure 1.11). From formula (1.39) and the plot shown in the

last figure follows that electric potential ϕ is piecewise quadratic within

the depletion region, equal to zero for x < −xp and assumes constant

value Vin for x > xn (see Figure 1.12). Thus, it can be concluded that

a specific potential difference Vin, called built-in potential, appears across

the depletion region. This potential is central to the performance of p-n

junctions. For this reason, we shall next derive the expression for Vin.
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At equilibrium, we have

Jp = 0, Jn = 0. (1.40)

The first equation in (1.40) can be written as follows:

Dp∇p+ µpp∇ϕ = 0. (1.41)

In the one-dimensional case when all physical quantities vary only with

respect to one variable x, the last equation leads to

Dp
dp

dx
= −µpp

dϕ

dx
. (1.42)

By using the Einstein relation (see formulas (1.22) and (1.23)), we derive

from (1.42) that

dϕ

dx
= −VT

d

dx
(ln p). (1.43)

By integrating from −xp to xn both sides of the last equality, we find

ϕ(xn)− ϕ(−xp) = −VT [ln p(xn)− ln p(−xp)]. (1.44)

The built-in potential Vin is defined as

ϕ(xn)− ϕ(−xp) = Vin. (1.45)

The latter means that formula (1.44) can be written as

Vin = VT ln
p(−xp)
p(xn)

. (1.46)

Now, by using the charge neutrality condition (1.37) at x = −xp and taking

into account that in the p region the density of electrons n is very small in

comparison with the density of holes p and density of ionized donors Np,

we find

p(−xp) ≈ Np. (1.47)

Then, according to formula (1.8), we have

p(xn)n(xn) = n2
i , (1.48)

and

p(xn) =
n2
i

n(xn)
. (1.49)

Now, by using the charge neutrality condition (1.37) at x = xn and the

same reasoning as before, we conclude

n(xn) ≈ Nn. (1.50)
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By using the last relation in formula (1.49), we find that

p(xn) =
n2
i

Nn
. (1.51)

By substituting formulas (1.47) and (1.51) into equation (1.46), we derive

the following important expression:

Vin = VT ln
NnNp
n2
i

. (1.52)

The starting point in our derivation of formula (1.52) was the first equation

in (1.40). It can be shown that the same formula (1.52) can be obtained

by using the second equation in (1.40) as the starting point of derivation.

Typically, the range of built-in potential variations is

0.5 V ≤ Vin ≤ 0.85 V. (1.53)

For instance, if

Nn = Np = 1016 cm−3, (1.54)

then

Vin = 0.699 V. (1.55)

Such a relatively small range of variation of Vin is due to the smallness of

VT (see formula (1.24)) and the presence of “ln” in equation (1.52).

It is also quite interesting to find the expression for the overall width W

of the depletion region as well as for its one-sided width xn (or xp). This

can be done by using the following reasoning. By using formula (1.38) in

the depletion region, we find

dE(x)

dx
= −qNp

ε
for − xp < x < 0, (1.56)

dE(x)

dx
=
qNn
ε

for 0 < x < xn. (1.57)

Furthermore, at the boundary of the depletion region, we have

E(−xp) = E(xn) = 0. (1.58)

From the last three formulas, we obtain

max
x

E(x) = E(0) = −qNn
ε
xn = −qNp

ε
xp. (1.59)

The last equation yields the following relation between one-sided widths of

the depletion region:

Nnxn = Npxp. (1.60)
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On the other hand, we have

Vin = ϕ(xn)− ϕ(−xp) = −
∫ xn

−xp
E(x)dx. (1.61)

It is clear that the absolute value of the integral in the last formula is equal

to the shaded area in Figure 1.11. Consequently,∫ xn

−xp
E(x)dx =

1

2
E(0)W, (1.62)

where

W = xn + xp. (1.63)

Now, by combining formulas (1.59), (1.61) and (1.62), we derive

Vin =
qNn
2ε

xnW. (1.64)

Next, by solving equations (1.60) and (1.63) we find the following expression

for xn:

xn =
Np

Nn +Np
W. (1.65)

By substituting the last formula into equation (1.64), we obtain

Vin =
qNnNp

2ε(Nn +Np)
W 2, (1.66)

which leads to

W =

[
2ε(Nn +Np)

qNnNp
Vin

] 1
2

. (1.67)

Finally, by using formula (1.52) for Vin in the last equation, we arrive at

W =

[
2εVT (Nn +Np)

qNnNp
ln
NnNp
n2
i

] 1
2

. (1.68)

The last formula gives the expression for the depletion width in terms of

doping densities. It is apparent that the higher the doping densities, the

narrower the depletion width. Indeed, in the particular case when Np =

Nn = N , from the last formula we find

W = 2

[
2εVT
qN

ln
N

ni

] 1
2

(1.69)

and it is clear that W → 0 as N →∞.
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From the equations (1.65) and (1.68), we derive the following expression

for one-sided width of the depletion region in terms of doping densities:

xn =

[
2εVTNp

qNn(Nn +Np)
ln
NnNp
n2
i

] 1
2

. (1.70)

It is clear from the last formula that for very large Nn we have the asymp-

totic relation

xn ∼
(lnNn)

1
2

Nn
, (1.71)

which suggests that the substantial one-sided narrowing of the depletion

region occurs with increase in Nn.

Overall narrowing of the depletion region may present some problems

related to avalanche breakdown of p-n junctions as discussed later in this

section. On the other hand, the one-sided narrowing of the depletion re-

gion is practically utilized in many semiconductor devices for constructing

ohmic contacts. Indeed, typically, ohmic contacts are metal-semiconductor

contacts with heavily doped semiconductors in the contact regions. This

makes depletion widths very narrow to allow carriers to tunnel through.

The built-in potential can be viewed as a potential (or energy) barrier

which prevents mobile carrier transport through the depletion region at

equilibrium. This property of the built-in potential is the key to under-

standing the rectifying functions of the p-n junction. When an external

voltage is applied to the p-n junction, then depending on its polarity this

voltage may decrease or increase the potential (energy) barrier already ex-

isting due to the built-in potential. If the applied voltage causes a decrease

in the potential barrier, this will result in current conduction. It is said

in this case that the p-n junction is forward biased and the polarity of the

applied voltage is treated as positive. If, on the other hand, the applied

voltage causes an increase in the potential barrier, this will further impede

the current conduction. It is said in this case that the p-n junction is reverse

biased and the polarity of the applied voltage is treated as negative.

The dependence of the p-n junction current on polarity and magnitude

of applied voltage is given by the following equation derived by W. Shockley:

I = Is

(
e
qV
kBT − 1

)
, (1.72)

where Is is the so-called saturation current. By recalling the definition of

thermal voltage VT (see formula (1.23)), the last equation can be written
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as follows:

I = Is

(
e
V
VT − 1

)
. (1.73)

A typical plot of this equation is shown in Figure 1.13. It is apparent from

this figure that the current is very rapidly and exponentially increased for

positive (forward) bias of the junction. This rapid increase in junction cur-

rent for small forward bias voltages is due to the smallness of VT , which is

equal to about 0.026 V at room temperatures (see (1.24)). For negative bias

voltages, the junction current rapidly reaches the value −Is. The question

can be immediately asked why there exists nonzero current for negative

voltages when the junction is reverse biased, and what the physical origin

of this current is. The answer is that the saturation current Is is due to

electron-hole pair (EHP) generation within the depletion region. Indeed,

such generation (however small) always exists (due, for instance, to an in-

trinsic process). Electrons and holes generated in the depletion region are

swept by an electric field in this region in opposite directions (i.e., toward

n-type and p-type regions, respectively). This results in negative current

Is. At equilibrium (zero bias voltage) this current Is is fully compensated

by the positive diffusion current which is due to a small number of high

energy electrons and holes that are able to surmount the energy barrier

created by the built-in potential. As negative bias is increased, this re-

sults in an increase in the energy barrier and in an appreciable decrease in

the number of high energy mobile carriers able to surmount this increased

energy barrier. Consequently, the positive diffusion current due to high

energy carriers is practically reduced to zero and the negative current Is
due to EHP generation is exposed, as can be seen from Figure 1.13.

Mobile carriers have exponential (or close to exponential) distribution in

energy. When the forward (positive) bias voltage is applied to the junction,



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 366

366 Fundamentals of Electric Power Engineering

Fig. 1.14

Fig. 1.15

the potential (energy) barrier is decreased. This results in exponential

increase in the number of mobile carriers able to surmount the reduced

energy barrier, and this leads to the exponential growth in junction diffusion

current as consistent with formulas (1.72) and (1.73).

The I-V curve presented in Figure 1.13 suggests that the resistance of

the p-n junction for positive bias voltages is very small, while for negative

bias voltages this resistance is very large. Using this fact, the actual I-V

curves can be idealized and represented by the plot shown in Figure 1.14.

It is apparent from the previous discussion and Figure 1.14 that a p-n

junction can be used as a diode, i.e., a circuit element that can be switched

from open-circuit state to short-circuit state and vice versa by the change

in polarity of applied voltage. The circuit notation for the diode element is

presented in Figure 1.15.

Power diodes used in power electronics are required to sustain large neg-

ative (reverse bias) voltages. Such voltages may result in large electric fields

across depletion regions and may cause the breakdown of p-n junctions at

some voltages Vbr. One of the physical mechanisms of such breakdown is

impact ionization when EHPs generated in depletion regions are apprecia-

bly accelerated by strong depletion region electric fields due to large reverse
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biases. These high energy mobile carriers cause new generation of EHPs

through the Auger generation process. These newly generated EHPs are

also accelerated by the electric field and also generate new EHPs through

the Auger process. This cascading generation leads to an avalanche of EHPs

and large breakdown current.

To increase the breakdown voltage in power diodes, special designs of

such diodes are used. In these designs, a lightly doped (almost intrinsic in

p-i-n diodes) semiconductor region is placed between heavily doped p+-type

and n+-type regions used for ohmic contacts. An example of such design

is shown in Figure 1.16. It must be stressed that the presence of lightly

doped and sufficiently thick n− layer is a typical structural feature of power

diodes. To demonstrate how lightly doped n− regions lead to the increase

in breakdown voltage, we shall start with the formula similar to (1.61):

Vbr = ϕ(xn)− ϕ(−xp) = −
∫ xn

−xp
E(x)dx, (1.74)

where xn and −xp are the boundary coordinates of the depletion region

when the reverse bias voltage is equal to Vbr. In the case of depletion

approximation, E(x) is a piecewise linear function (see Figure 1.11). Con-

sequently,

−
∫ xn

−xp
E(x)dx =

1

2
EbrW, (1.75)

where Ebr is the breakdown value of electric field whose magnitude is equal

to E(0), while W = xn + xp. From the last two formulas, we derive

V 2
br =

1

4
E2
brW

2. (1.76)
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By using the same line of reasoning which led to the derivation of formula

(1.66), it can be shown that

Vbr =
qNnNp

2ε(Nn +Np)
W 2. (1.77)

By dividing formula (1.76) by formula (1.77), we find

Vbr =
ε(Nn +Np)

2qNnNp
E2
br. (1.78)

Since

Np � Nn, (1.79)

from equation (1.78) we finally obtain

Vbr ≈
εE2

br

2qNn
. (1.80)

The last formula clearly reveals that for the same breakdown electric field

Ebr the breakdown voltage can be appreciably increased by reducing density

Nn. The latter justifies using lightly doped n− regions in power diodes.

In the conclusion of this section, it is worthwhile to mention that p-n

junctions are used in solar cells for conversion of solar energy into electric

energy. The principle of operation of these cells is based on optical gener-

ation of EHPs in the depletion region of the p-n junction. This generation

occurs because in the depletion region exposed to optical radiation valence

electrons may absorb optical energy from incident light sufficient for their

transition to the conduction band. These optically generated electrons and

holes are then swept by the electric field in the depletion region in opposite

directions resulting in junction electric current. This conversion of energy

of optical radiation into the energy of electric currents in junctions is the

physical foundation of solar cell operation.

1.3 BJT and Thyristor

In this section, we shall first discuss the basic design and the principle

of operation of the bipolar junction transistor (BJT) as well as how this

transistor can be utilized as a switch. Then, we shall consider the basic

structure of the thyristor, which is often called a semiconductor-controlled

rectifier (SCR), and discuss its principle of operation by using a two-BJT

model of the thyristor.
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The BJT is a three-terminal device and its three contacts are connected

to three differently doped regions which are called emitter, base and collec-

tor. Schematics of the BJT are shown in Figure 1.17a for a p+np transistor,

while its circuit symbol is presented in Figure 1.17b. The BJT can also be

designed as a n+pn transistor as shown in Figure 1.18a, and its circuit

symbol is depicted in Figure 1.18b. Below, we shall discuss only the p+np

transistor; the treatment of the n+pn device is very similar and will be left

as an exercise.

There are two very important features of BJT design. First, the emitter

is heavily doped, which implies that

p+ � n. (1.81)

Second, the base region of the BJT is very narrow. The latter statement is

usually characterized by the inequality

WB � Lp, (1.82)

where WB stands for the width of the base, while Lp is the diffusion length

of holes in the n-type region, i.e., the average distance through which the

holes can diffuse without recombination.
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The above two features define the quality of the BJT.

Next, we shall discuss the operation of the BJT as a current-controlled

device. In doing so, we shall emphasize only the main features of this

operation without covering the complete theory of this device.

A BJT has two junctions, the emitter junction between the emitter

and the base regions, and the collector junction between the base and the

collector regions. At equilibrium, that is, when the current through the

base terminal is zero, there are two depletion regions corresponding to the

emitter and collector junctions. The electric fields in these depletion regions

are shown in Figure 1.17a, and these electric fields prevent the transport of

mobile carriers through the emitter and collector junctions. Hence, there is

no net current flow from emitter to collector. Also, at equilibrium the part

of the base between these two depletion regions is charge neutral.

Now, consider what happens when a small electron current IB through

the base is introduced. This current results in the small excess of negatively

charged electrons in the previously charge neutral region of the base. The

electric field of this small net negative charge in the base is directed opposite

to the electric field in the depletion region of the emitter junction. This
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leads to the small reduction in the electric field in the emitter junction,

which is equivalent to small forward bias of this junction. Since the current

through a p-n junction is exponentially dependent on bias voltages (see

equation (1.73)), this small forward bias results in a large current through

the emitter junction called the emitter current. Since the emitter is heavily

doped (see inequality (1.81)), the emitter current consists predominantly

of holes injected into the base. These holes diffuse through the base with

very little recombination because the base is narrow (see formula (1.82)).

When the injected holes reach as a result of diffusion the depletion region of

the collector junction, they are swept by the electric field in this depletion

region into the collector region, resulting in large collector current IC . Thus,

a small base current results in large collector current. The latter can be

mathematically written as

IC = βIB , (1.83)

where β is the amplification factor (or current gain). For properly designed

BJTs, β is quite large and typically

β > 100. (1.84)

It is clear from (1.83) that the collector current is mostly controlled by

the base current and does not depend much on the voltage VEC across

the transistor, i.e., the voltage between the emitter and collector terminals.

This is reflected in the family of curves IC(VEC) shown in Figure 1.19 for

different values of the base current IB , namely IB1
< IB2

< IB3
< IB4

.

Now, we shall discuss how the BJT can be used as a current-controlled

switch. This is done by using the common emitter configuration where
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the emitter terminal is common to the circuit controlling the base current

and to an external circuit for which the BJT serves as a switch. This

configuration is shown in Figure 1.20a. By assuming that the switching of

the BJT occurs sufficiently fast, the external circuit can be represented by

the Thevenin-equivalent resistance RC and voltage source VC (see Figure

1.20b). Indeed, during the fast switching, the voltages across capacitors
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and currents through inductors in the external circuit do not change much.

This means that, during the switching, capacitances and inductances can

be replaced by voltage and current sources, respectively. For this reason,

the external circuit can be treated as a resistive circuit with sources and

can be replaced by its Thevenin equivalent.

By using KVL for the loop consisting of the BJT, RC and voltage source

VC , we find

VEC + ICRC = VC , (1.85)

or

VEC = VC − ICRC . (1.86)

It is apparent that the voltage VEC is a function of IC (see the curves in

Figure 1.19). Consequently, the last equation can be written as follows:

VEC(IC) = VC − ICRC . (1.87)

This nonlinear equation can be solved graphically by plotting the nonlin-

ear function VEC(IC) and the straight line representing the right-hand side

of the last formula, which is usually called a “load line.” This is done in

Figure 1.21, where VC and VC/RC are the intercepts of the load line with

the VEC-axis and the IC-axis, respectively. It is apparent that the solution

of equation (1.87) corresponds to the intersection point of the above two

graphs, because for the value of IC corresponding to this intersection point

the equality of both sides of equation (1.87) is achieved. This graphical

representation of the operational condition of the BJT is very useful for

the description of BJT performance as a switch. Indeed, consider a set of
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curves representing VEC(IC) for different values of the base current IB and

the load line representing the external circuit during the switching process

(see Figure 1.22). The switching of the BJT by means of the appropriate

increase in the base current can be explained as follows. For zero base

current, there is practically no current through the transistor and the oper-

ating point of the BJT is marked as point “0” on Figure 1.22. As the base

current IB is increased, the operating points will be, in succession, points

“1,” “2,” “3” and “4” on the same figure, and they represent intersection

points between the load line and the set of VEC(IC) curves corresponding

to monotonically increased values of IB . Thus, for zero (or negative) value

of IB , there is very small (or no) current through the BJT for large values

of VEC . This clearly corresponds to the high resistive (so-called “off”) state

of the transistor. On the other hand, for sufficiently large base current IB4

(at operating point “4”), there exists sufficiently large current through the

BJT for negligibly small value of VEC . This clearly corresponds to the low

resistive (or so-called “on”) state of the transistor. By neglecting small

currents in the “off” states and small voltages in “on” states, the BJT can

be viewed as an ideal current-controlled switch characterized by the plot

shown in Figure 1.23. It is clear from the presented discussion that the

BJT has high-quality “on” and “off” states. The latter means that in these

states electric power losses are very small because voltages are very small

in the “on” state and currents are very small in the “off” state. That is

not true for the intermediate states that the BJT goes through during the

switching process. In these intermediate states, VEC(t) and IC(t) are ap-

preciable and the total energy loss during the switching Esw is given by the
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formula

Esw =

∫ τsw

0

VEC(t)IC(t)dt, (1.88)

where τsw is the switching time. It is clear from the last formula that the

switching losses can be made small if the switching is very fast. Unfortu-

nately, the BJT is intrinsically a relatively slow switching device. This is

because the “turn-on” and “turn-off” switching of the BJT is controlled

by how fast charges in the base region (so-called stored charges) can be

injected or removed. Charge removing may be especially slow because it

is naturally accomplished through the recombination process. To expedite

the charge removal at turn-off, the base current is reversed, i.e., it is driven

in the direction opposite to that during the turn-on process.

Power BJTs usually have vertical four-layer structures with a collector

lightly doped (drift) region to increase breakdown voltages. Vertical struc-

tures are also desirable because they lead to large cross-sectional areas for

transistor currents. This is beneficial for reduction of on-state resistance

and on-state power dissipation.

Now, we shall proceed to the discussion of the thyristor (SCR). This is

a three-terminal device and its terminals are marked as anode (A), cathode

(K) and gate (G). The circuit symbol of this device is presented in Figure

1.24. The switching of this device is controlled by the polarity of voltage

VAK applied between the anode and cathode as well as by a short current

pulse through the gate. This device is designed to achieve the switching

performance which is (in an idealized manner) illustrated by Figure 1.25.

This switching performance can be described in words as follows. When a

negative voltage is applied between the anode and cathode (VAK < 0), no

(appreciable) current conduction is possible; the SCR is in the “off” state.

When the polarity of the applied voltage is reversed (VAK > 0), the SCR
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Fig. 1.25

Fig. 1.26

still remains in the “off” state as long as no current IG is pulsed through

the gate terminal. At the timing of proper choice, a short pulse of current

IG turns the SCR into the “on” state, and the device remains in this self-

sustaining state with low on-state voltage and high on-state current after

the end of the gate current pulse. To turn off the SCR, the polarity of the

voltage VAK must be reversed.

The described switching performance can be achieved by using the de-

sign shown in Figure 1.26. It is clear from this figure that the structure

of the thyristor consists of four semiconductor regions doped in alternating
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manner. One of these regions is lightly doped (n− region) and serves as

the drift region that supports (without breakdown) high voltages when the

device is in the nonconducting (blocking) state. It is clear that the device

has three junctions J1, J2 and J3 marked in Figure 1.26. It is also clear

that the device design is such as if it contains two BJTs: a p+n−p BJT

and a n+pn− BJT. It can be easily observed that the collector (p region)

of the p+n−p BJT serves as the base for the n+pn− BJT; and the other

way around, the collector (n− region) of the n+pn− BJT serves as the base

of the p+n−p BJT. This leads to the two-transistor model of the thyristor

shown in Figure 1.27, which can be used to explain the operation of the

thyristor.

First, assume that the polarity of the applied voltage VAK is such that

junctions J1 and J3 are reverse biased. This polarity is defined as negative

(VAK < 0). It is clear that there is no current through the thyristor at

these biasing conditions. This is the reverse blocking mode (state).

Next, assume that the polarity of VAK is reversed (VAK > 0). Under this

biasing condition, junctions J1 and J3 are forward biased, while junction

J2 is reverse biased. Again, there is no current through the device; this is

the forward blocking mode (state).

Now, assume that as the device is in the forward blocking mode a short

pulse of current IG is sent through the gate terminal. This pulse triggers

the n+pn− BJT and sets into motion electrons from the n+ region through

the p region into the n− region. This flow of electrons into the n− region

triggers the p+n−p BJT, which results in the motion of holes from the p+

region through the n− region into the p region. This keeps the n+pn− BJT

triggered even if the gate current is completely diminished. This mutual
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triggering mechanism maintains the “on” (current conducting) state of the

thyristor that can only be switched off by changing the polarity of the

applied voltage VAK .

1.4 MOSFET, Power MOSFET, IGBT

In this section, we shall discuss MOSFET-type devices whose principle

of operation is based on electric field-induced inversion phenomena rather

than on proper biasing of junctions. These devices offer some clear advan-

tages over BJT devices. Indeed, bipolar transistors are operated as current-

controlled switches. As a result, appreciable base currents are required to

maintain them in on-states, and even larger reverse currents are needed

to speed up their turn-off. This makes the base drive circuits quite com-

plicated and expensive. Furthermore, BJT switches are intrinsically slow,

which results in large switching losses. In contrast, MOSFET devices are

operated as voltage-controlled switches and no delays occur due to storage

or recombination of mobile carriers during the turn-off process. As a result,

the switching speed of MOSFET devices is orders of magnitude faster than

for bipolar transistors. This fast switching of MOSFET devices may lead

to lower overall (total) losses in comparison with bipolar transistors despite

the fact that on-state losses for MOSFET devices are larger. The fast in-

trinsic switching of MOSFETs is also beneficial for ripple suppression that

can be accomplished by using smaller energy storage elements (inductors

and capacitors).

We shall start with the discussion of the design and the principle of oper-

ation of the lateral MOSFET, which is the workhorse of digital electronics.

A schematic depiction of the structure of this MOSFET is shown in Figure

1.28a. There are many circuit symbols for MOSFETs which are currently

in use and which reflect different specific features of their designs and/or

operation. In this text, we shall use the circuit symbol shown in Figure

1.28b. The term “MOSFET” is an abbreviation that reflects the main fea-

tures of the design and the principle of operation of such transistors. The

first three letters “MOS” stand for the metal-oxide-semiconductor structure

which is evident from Figure 1.28a. The last three letters “FET” stand for

“field-effect transistor,” which captures the main feature of the principle of

operation of the MOSFET. In the MOSFET shown in Figure 1.28a there

are four terminals: gate (G), source (S), drain (D) and substrate (Sub),

and usually the “S” and “Sub” terminals are connected together. When a
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positive voltage VG is applied to the gate terminal, it creates a vertical elec-

tric field E directed down from the gate terminal. This electric field forces

holes in the p-doped silicon substrate to move in the direction of the field

and away from the silicon dioxide (SiO2) and silicon interface. This results

in a thin layer under the dioxide interface depleted of holes. When the gate

voltage VG and electric field E are further increased, electrons moving in

the direction opposite to E are brought close to the dioxide interface. As

a result, the thin layer under the dioxide interface is changed from p-type

to n-type. This process is called inversion, and it leads to the formation

of an n-channel that connects the two n+ regions of the source and drain

contacts (see Figure 1.28a). Now, if a small voltage VDS between the drain

(D) and source (S) is applied, it results in current ID from drain to source.

This current is linearly increased with small increases in VDS because the

n-channel serves as a resistor (see Figure 1.29a). As VDS and ID are fur-

ther increased, this results in appreciable gradual increase in potential along

the dioxide interface in the direction from source to drain contacts. This

gradual increase in potential results in gradual decrease in vertical electric

field E which, in turn, leads to gradual n-channel narrowing as one moves

from source to drain. This narrowing causes an increase in the n-channel

resistance and manifests itself in gradual decrease in the local slope of the

curve ID(VDS) (see Figure 1.29a). As voltage VDS is further increased, the

point is reached when the thickness of the n-channel near the drain contact

is reduced to zero (see dashed line in Figure 1.28a). In other words, the
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n-channel is pinched-off. This pinch-off phenomenon results in saturation

of current ID. The latter means that as VDS is further increased beyond

its pinch-off value practically no significant increase in ID is observed (see

Figure 1.29a). It is clear that the shape of the curve ID(VDS) depends on

the value of voltage VG. Indeed, the larger VG, the larger is the vertical

electric field emanating from the gate and the larger is the thickness of the

inversion layer (i.e., n-channel). The latter results in smaller resistance of

this n-channel and the larger current ID for the same value of VDS . This

also results in the increase of pinch-off value of VDS . A set of ID versus
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VDS curves for different values of VG is presented in Figure 1.29b. It can be

shown theoretically that in the saturation state the drain current ID has a

“square-law” dependence on the gate voltage VG. This is indicated by the

dashed line in Figure 1.29b.

Next, we shall discuss how a MOSFET device can be utilized as a

voltage-controlled switch. This is done by connecting source and drain ter-

minals to an external circuit as shown in Figure 1.30a. Since the switching

of the MOSFET is quite fast, capacitances and inductances can be replaced

during the switching by voltage and current sources, respectively. This

means that the external circuit can be represented with respect to source

and drain terminals by the Thevenin-equivalent resistance RD and voltage

source VD (see Figure 1.30b). By using KVL for the loop consisting of the

MOSFET, RD and voltage source VD, we find

VDS(ID) + IDRD = VD, (1.89)

or

VDS(ID) = VD − IDRD. (1.90)

The last nonlinear equation can be solved graphically by using the concept

of the “load line” (see the previous section). This graphical solution is

illustrated in Figure 1.31, which also clarifies the operation of the MOS-

FET as a switch. Indeed, for zero (or slightly negative) voltage VG, there

is practically no current through the MOSFET. This operating point is

marked as point “0” on Figure 1.31, and it corresponds to the “off” state of

the transistor. As the gate voltage VG is monotonically increased, achiev-

ing successively the values VG1 , VG2 , VG3 and VG4 , the operating points

achieved consecutively are the points “1,” “2,” “3” and “4” (see again Fig-

ure 1.31). Thus, for sufficiently large gate voltage VG4
, the corresponding

operating point is point “4” where there exists a large current through the

MOSFET for a relatively small voltage VDS . This operating point can be

treated as the “on” state of the transistor. It is clear from the above figure

that in the on-state of the MOSFET there are non-negligible losses. This

is the main shortcoming of using the MOSFET as a switch.

Now, we proceed to the discussion of the power MOSFET. As with

most power semiconductor devices, the structure of this device is vertical.

A schematic depiction of this structure is presented in Figure 1.32. By

using a vertical structure and lightly doped (drift) n− region, it is possible

for power MOSFETs to sustain high blocking voltages and high currents.

The principle of operation of the power MOSFET is essentially the same as
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the principle of operation of the lateral MOSFET. Namely, when a positive

gate voltage is applied, an n-channel is formed in the p regions through the

inversion process. This n-channel connects the n+ regions of the source

contacts with the n− region. As the voltage between the drain and source

is applied, the electron flow from source to drain is established resulting

in drain current ID. The curves ID versus VDS are basically the same as



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 383

Power Semiconductor Devices 383

Fig. 1.31

Fig. 1.32

those shown in Figure 1.29b for the lateral MOSFET. Power MOSFETs

are fabricated by using a vertical double diffusion process to create n+ and

p regions. For this reason, these power MOSFETs are sometimes called

VDMOSFETs or DMOSFETs. Power MOSFETs are fabricated as multi-

cell devices and Figure 1.32 represents the schematics of one cell. A large

number of such cells are closely packed in a single silicon chip and all

these cells are connected in parallel. The number of parallel-connected

cells varies (depending on the geometric dimensions of the chip) from several
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thousand to more than twenty thousand. As a result of parallel connectivity

of the cells, the overall on-state resistance (i.e., resistance between drain

and source terminals in the conducting state) is substantially reduced in

comparison with the on-state resistance of an individual cell.

It turns out that the structure of the power MOSFET can be modified

to create another power semiconductor device called the IGBT or COM-

FET. The first abbreviation stands for “insulated-gate bipolar transistor,”

while the second abbreviation stands for “conductivity modulated field-

effect transistor.” A schematic depiction of one cell of the IGBT is shown

in Figure 1.33. In actual IGBT devices a very large number of such cells

are connected in parallel.

It is evident from this figure that the main structural difference between

the power MOSFET and IGBT is the replacement of the n+ region of

the power MOSFET by a p+ region in the IGBT. This replacement has

important consequences. Indeed, on two sides of each cell of the IGBT two

p+n−p bipolar transistors are formed as a result of the above replacement.

When a positive voltage is applied to the gate resulting in the formation

of two n channels in the p regions, the flow of electrons will be caused by

the application of drain-to-source voltage. This electron current entering

the n− region (which is the base region for the bipolar transistors on the

sides) will trigger these bipolar transistors, resulting in the side flow of

holes from drain to source. Thus, the current in the IGBT has two distinct

components, the electron current due to the MOSFET action and the hole
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current due to the BJT action:

IIGBT = IMOSFET + IBJT. (1.91)

This leads to the increase in IGBT current for the same value of VDS in

comparison with the power MOSFET, where only the electron component

of the drain current is present. This increase in the drain current results in

the reduction of on-state resistance and on-state losses.

It must be remarked that the introduction of the p+ region in the IGBT

creates a four-layer vertical structure p+n−pn+ similar to the one used in

the design of thyristors (see the previous section). This may lead to parasitic

thyristor action in the IGBT which is usually called thyristor latch-up. This

parasitic thyristor action may compromise the gate control over the drain

current. Special techniques have been developed to achieve non-latch-up

operation of the IGBT. The discussion of these techniques is outside the

scope of this text.

1.5 Snubbers and Resonant Switches

It has been repeatedly emphasized in our discussion that in power electron-

ics semiconductor devices are used as switches and that it is desirable to

use fast switching devices in order to reduce ripples in power converters as

well as their overall size, weight and cost. Fast switchings may result in fast

time variations of voltages (i.e., large dv
dt ) and currents (i.e., large di

dt ), which

is a cause of electromagnetic interference (EMI). The fast switchings may

also result in large voltages across semiconductor devices during turn-off

transients and large currents through devices during turn-on transients. To

ameliorate these adverse effects of fast switchings, special snubber circuits

are used in combination with semiconductor devices. These snubber cir-

cuits are not fundamental to the understanding of the principle of operation

and the main properties of power converters. For this reason, in subsequent

chapters the snubber circuits are neglected and switches are assumed to be

ideal.

To illustrate the central idea of snubber circuits, consider the effects

of a parallel capacitor (Figure 1.34a) and a series inductor (Figure 1.34b)

during turn-off and turn-on of semiconductor switches, respectively. It is

apparent that during the turn-off of the switch in Figure 1.34a the capacitor

tends to maintain the voltage across the switch close to zero, i.e., close

to its value immediately before switching. Similarly, it is apparent that

during the turn-on of the switch in Figure 1.34b the inductor tends to
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maintain the current through the switch close to zero, i.e., close to its value

immediately before switching. In this way, parallel capacitors and series

inductors tend to reduce the rates of time variations of voltages across the

switches and currents through the switches immediately after their turn-off

or turn-on, respectively. However, the circuits shown in Figure 1.34 are not

fully satisfactory. Indeed, at turn-on of the switch shown in Figure 1.34a,

the charge accumulated in the capacitor is dissipated through the switch

and may result in a high current overshoot and large transistor losses.

Similarly, at turn-off of the switch shown in Figure 1.34b, high voltage

overshoot may occur across the switch as well as large switching losses.

To avoid these shortcomings, the above circuits are modified as shown in

Figure 1.35 and they represent so-called “turn-on” and “turn-off” snubber

circuits, respectively. The operation of the circuit shown in Figure 1.35a

can be briefly described as follows. During turn-off, the diode turns on and

the capacitor is being gradually charged. This slows the rate of voltage

increase across the semiconductor switch. The next time the transistor
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is turned on, the capacitor discharges through the resistor and this limits

the discharge current through the switch. This also suggests that in the

circuits shown in Figure 1.35 the energy losses in the resistors may result in

reduction of energy losses in the semiconductor switches if proper selections

of capacitors, inductors and resistors are made. This and other issues such

as proper combining of turn-on and turn-off snubbers to form “unified”

snubbers as well as the design of “energy recovery” snubbers are outside

the scope of this book. The discussion of such issues can be found in more

comprehensive books on power electronics (see, for instance, [29] and [43]).

A very viable and promising alternative to snubber circuits has been

developed and it is based on the concept of a resonant switch. Two tech-

niques of resonant switching have been advanced. The first one is the zero-

current-switching (ZCS) technique that can be accomplished by using, for

instance, the resonant switches shown in Figure 1.36. The other one is the

zero-voltage-switching (ZVS) technique that can be accomplished by using,

for instance, the resonant switches shown in Figure 1.37. It is clear from

the above figures that in resonant switches semiconductor devices are used
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in combination with LC resonant circuits (LC tanks). These LC circuits

are needed to shape the current or voltage waveforms of semiconductor

switches. Namely, the addition of these resonance circuits results in wave-

forms with zero crossings of transistor currents or transistor voltages. These

zero crossings are used for on-to-off (or off-to-on) switch transitions. We

shall briefly illustrate this by considering the operation of the ZCS resonant

switch shown in Figure 1.36a. This operation can be roughly described as

follows. Since the switch is connected in series with an inductor, during the

turning-on of this switch its current remains close to zero. As soon as the

switch is turned on, the parallel resonant LC circuit is formed. This usu-

ally results in the switch current waveform with zero crossing. This current

zero crossing is used for turning the switch off. It is clear from the above

description that the switch turns on and off at close to zero current. This

substantially reduces the switching losses in comparison with conventional

transistor switching discussed in the previous sections of this chapter. Such

switching with almost zero switch current (or almost zero switch voltage)

is called soft switching, while the previously discussed non-resonant switch-

ing of transistors (accompanied by appreciable power losses) is called hard

switching. It is also clear from the schematic description of the operation of

resonant switching that the realization of this switching requires the proper

control of transistors to guarantee that their switching is accomplished at

zero current (or voltage) crossings. This has important implications con-

cerning the principle of operation and the structure of power converters.

For instance, in the case of using resonant switches in dc-to-dc converters

(see the last chapter of the book), the duty factor can no longer serve as

the primary control parameter to regulate the converter output dc voltage.

In resonant (or quasi-resonant) dc-to-dc converters, the output dc voltage

is often controlled by the switching frequency (or by the ratio of switching

and resonance frequencies) rather than by the duty factor. High frequency

resonance switching and resonant converters are currently a very active area

of research in power electronics, and the detailed discussion of the many

issues related to these converters is beyond the scope of this book. This

discussion can be found in [30].
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Rectifiers

2.1 Single-Phase Rectifiers with RL Loads

In this chapter, we shall discuss rectifiers, which are ac-to-dc converters.

The latter means that the input of these converters is an ac voltage, while

the output is a dc voltage. These converters use diodes and thyristors

for rectification. We shall first consider diode rectifiers and then conclude

the chapter with the detailed discussion of controlled rectifiers, which are

thyristor (SCR)-based rectifiers.

We start with the discussion of the single-phase full-wave diode bridge

rectifier shown in Figure 2.1a. Another (equivalent) drawing of this rectifier

circuit is shown in Figure 2.1b. Both of these equivalent drawings will be

used in our subsequent discussions in this chapter. In the figure, there is

a four-shoulder bridge with diodes D1, D2, D3 and D4, one respectively in

each of its shoulders. Across one diagonal of the bridge, a known ac voltage

source

vs(t) = Vms sinωt (2.1)

is connected, while across the other bridge diagonal an RL branch is con-

nected. The purpose of the design of this circuit is to achieve voltage vout(t)

across the resistor terminals that is constant in its polarity and almost con-

stant in its magnitude. Such a voltage can then be regarded as a dc voltage

source for an external circuit connected across the resistor terminals. It is

shown below that the constant polarity of vout(t) is achieved due to the

diode bridge, while an almost constant magnitude of vout(t) is obtained by

using an inductor with sufficiently large inductance L.

We shall now proceed to the detailed analysis of the rectifier shown in

Figure 2.1 and present this analysis as the sequence of the following specific

steps.

389
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Fig. 2.1

Fig. 2.2

Step 1. The purpose of this step is to replace the diode bridge and the ac

voltage source vs(t) by the equivalent voltage source veq(t). This replace-

ment leads to the reduction of the electric circuits shown in Figure 2.1 to

the equivalent electric circuit shown in Figure 2.2. It must be remarked

that this type of first step where given sources and semiconductor switches

are replaced by equivalent voltage sources is generic in the analysis of all

power electronics converters. A step of this kind will be used time and

again in our subsequent discussions. This step requires “proper reading”
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Fig. 2.3

of electric circuits of power converters. This “reading” is exactly what we

should do next.

It is clear from the comparison of the electric circuits shown in Figures

2.1a and 2.2 that veq(t) is the equivalent voltage source if and only if at any

time t this voltage source is equal to the voltage between nodes 2 and 4 in

the original circuit shown in Figure 2.1a. Thus, in order to find veq(t) we

have to find the voltage between the nodes 2 and 4. To this end, consider

the positive half-cycle of vs(t) (see Figure 2.3a). It is apparent that during

this half-cycle the anode of diode D1 is at the highest positive potential in

the circuit, while the cathode of diode D3 is at the most negative potential

in the circuit. This implies that during the positive half-cycle of vs(t) diodes

D1 and D3 are in “on” (i.e., conducting) states. It is also clear that diodes

D2 and D4 are in “off” states because the highest positive potential is at

the cathode of diode D4 and the most negative potential is at the anode

of diode D2. Thus, it can be concluded that during the positive half-cycle

the voltage between nodes 2 and 4 (and, consequently, veq(t)) is equal to



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 392

392 Fundamentals of Electric Power Engineering

vs(t) as shown in Figure 2.3b. Next, consider the negative half-cycle of

vs(t) when node 3 is at the highest positive potential while node 1 is at the

most negative potential. By using the same line of reasoning as before, it is

easy to conclude that during this half-cycle diodes D2 and D4 are in “on”

states while diodes D1 and D3 are in “off” states. This means that during

the negative half-cycle of vs(t) the voltage between the nodes 2 and 4 (and,

consequently, voltage veq(t)) is equal to −vs(t) as illustrated in Figure 2.3b.

Thus, the diode bridge enforces the constant polarity of voltage between

nodes 2 and 4. It is also clear from Figure 2.3 that

veq(t) = Vms|sinωt|. (2.2)

It is apparent that veq(t) is a periodic function with period

T ′ =
T

2
=
π

ω
. (2.3)

This concludes the first step.

Step 2. Having found veq(t), we can proceed to the steady-state analysis of

the equivalent circuit shown in Figure 2.2. We shall carry out this analysis

by using the time-domain technique developed in Chapter 2 of Part I for the

analysis of an electric circuit excited by a periodic non-sinusoidal voltage

source. In accordance with this technique, we shall consider one period,

namely,

0 < t <
π

ω
(2.4)

of veq(t) and the steady-state response of the electric circuit in Figure 2.2

during this time period. This requires finding the solution of the following

differential equation with periodic boundary conditions:

L
di(t)

dt
+Ri(t) = Vms sinωt, (2.5)

i(0) = i
(π
ω

)
. (2.6)

Indeed, equation (2.5) is the KVL equation for the circuit shown in Figure

2.2, and the form of the right-hand side of this equation accounts for the

fact that veq(t) = vs(t) in the time interval specified by formula (2.4). The

boundary condition (2.6) is used because we are interested in the steady-

state (i.e., periodic) solution of equation (2.5). As soon as the solution of

the boundary value problem (2.5)-(2.6) is found for the time interval (2.4),
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this solution can be periodically extended for any time interval by using

the formula

i(t) = i

(
t+ k

T

2

)
, (2.7)

where k is any integer.

Step 3. Next, we shall find the mathematical form of the general solution

of equation (2.5). This solution has two distinct components: a particular

solution ip(t) of the inhomogeneous equation (2.5) and a general solution

ih(t) of the corresponding homogeneous equation. Namely,

i(t) = ip(t) + ih(t). (2.8)

We shall treat ip(t) as the ac steady state of the electric circuit shown in

Figure 2.2 excited by the sinusoidal voltage source vs(t) rather than veq(t).

It is clear that this ac steady state is a solution of equation (2.5). This ac

steady state is given by the formula

ip(t) = Im sin(ωt− ϕ), (2.9)

where

Im =
Vms√

R2 + ω2L2
, (2.10)

tanϕ =
ωL

R
. (2.11)

Thus,

ip(t) =
Vms√

R2 + ω2L2
sin(ωt− ϕ). (2.12)

The component ih(t) of i(t) is a general solution of the homogeneous equa-

tion

L
dih(t)

dt
+Rih(t) = 0. (2.13)

It is apparent that this solution is given by the formula

ih(t) = Ae−
R
L t (2.14)

where A is an arbitrary constant. By combining formulas (2.8), (2.12)

and (2.14), we find that the mathematical form of the general solution of

equation (2.5) is given by the expression

i(t) =
Vms√

R2 + ω2L2
sin(ωt− ϕ) +Ae−

R
L t. (2.15)
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Step 4. Now, we shall find the constant A by using the periodic boundary

condition (2.6). Indeed, from formula (2.15) we find

i(0) = − Vms sinϕ√
R2 + ω2L2

+A, (2.16)

i
(π
ω

)
=
Vms sin(π − ϕ)√
R2 + ω2L2

+Ae−
πR
ωL . (2.17)

By using the last two formulas in the boundary condition (2.6), we obtain

− Vms sinϕ√
R2 + ω2L2

+A =
Vms sinϕ√
R2 + ω2L2

+Ae−
πR
ωL , (2.18)

which leads to

A
(

1− e−πRωL
)

=
2Vms sinϕ√
R2 + ω2L2

, (2.19)

and

A =
2Vms sinϕ(

1− e−πRωL
)√

R2 + ω2L2
. (2.20)

By substituting this expression for A into formula (2.15), we derive

i(t) =
Vms√

R2 + ω2L2
sin(ωt− ϕ) +

2Vms sinϕ(
1− e−πRωL

)√
R2 + ω2L2

e−
R
L t. (2.21)

Finally, since

vout(t) = Ri(t), (2.22)

we conclude that

vout(t) =
VmsR√

R2 + ω2L2
sin(ωt− ϕ) +

2VmsR sinϕ(
1− e−πRωL

)√
R2 + ω2L2

e−
R
L t.

(2.23)

The last formula together with equation (2.11) for ϕ gives the explicit an-

alytical expression for the output voltage of the power converter shown in

Figure 2.1.

Step 5. Next, we shall demonstrate that for sufficiently large L, that is,

when

ωL� R, (2.24)
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the voltage vout(t) has almost constant value and we shall find this value.

From the last inequality we have√
R2 + ω2L2 ≈ ωL (2.25)

and
R√

R2 + ω2L2
≈ 0. (2.26)

This means that the first term in the right-hand side of formula (2.23) is

quite small and can be neglected. We turn now to the analysis of the second

term of the right-hand side of the same formula. It is clear from inequality

(2.24) and formula (2.11) that

tanϕ =
ωL

R
� 1. (2.27)

This implies that

ϕ ≈ π

2
and sinϕ ≈ 1. (2.28)

Furthermore, by retaining only the first two terms in the power series ex-

pansion of the exponential, we find

1− e−πRωL ≈ 1−
(

1− πR

ωL

)
=
πR

ωL
. (2.29)

Next, we shall evaluate e−
R
L t in the time interval (2.4):

1 > e−
R
L t > e−

πR
ωL ≈ 1− πR

ωL
≈ 1. (2.30)

The last formula implies that

e−
R
L t ≈ 1. (2.31)

By using formulas (2.25), (2.28), (2.29) and (2.31) in equation (2.23), we

find

vout(t) ≈
2

π
Vms ≈ 0.637Vms. (2.32)

The plot of vout(t) is illustrated by Figure 2.4, that is, the output voltage

vout(t) is indeed almost constant.

Step 6. Now, we shall demonstrate that this (almost) constant value of

vout(t) can be found directly by using the averaging technique. To this end,

by using formula (2.22), we shall rewrite the equation (2.5) as follows:

L
di(t)

dt
+ vout(t) = Vms sinωt. (2.33)
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Fig. 2.4

We shall average both sides of the last equation over one period π
ω :

L
ω

π

∫ π
ω

0

di(t)

dt
dt+

ω

π

∫ π
ω

0

vout(t)dt =
ωVms

π

∫ π
ω

0

sinωtdt. (2.34)

By using the boundary condition (2.6), we find
∫ π

ω

0

di(t)

dt
dt = i

(π
ω

)
− i(0) = 0. (2.35)

By definition,

vout(t) =
ω

π

∫ π
ω

0

vout(t)dt, (2.36)

where vout(t) stands for the average value of vout(t).

Finally,

∫ π
ω

0

sinωtdt = − 1

ω
cosωt

∣∣∣∣
π
ω

0

=
2

ω
. (2.37)

By combining formulas (2.34), (2.35), (2.36) and (2.37), we find

vout(t) =
2

π
Vms. (2.38)

The following four remarks are in order. First, the derivation of formula

(2.38) for the average value of the output voltage was done without using

inequality (2.24). This implies that formula (2.38) is valid for any value

of inductance. Second, the output voltage will almost coincide with its

average value if the inductance is sufficiently large. Third, by subtracting
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formulas (2.38) and (2.23), the analytical expression for the ripple vripout(t)

in the output voltage is obtained:

vripout(t) =
VmsR√

R2 + ω2L2
sin(ωt− ϕ) +

2VmsR sinϕ(
1− e−πRωL

)√
R2 + ω2L2

e−
R
L t

− 2

π
Vms. (2.39)

The last formula can be used for the evaluation of ripple for any values

of rectifier parameters. Fourth, for sufficiently large inductance L, that is,

when inequality (2.24) is satisfied, the dc output voltage is given by formula

(2.32) and it does not depend on the value of resistance R. This implies

that a resistive load across the terminals of the output voltage will change

the overall resistance but will not affect the value of the output voltage.

In this sense, this dc output voltage can be treated as an ideal dc voltage

source with respect to the external load. In fact, the external resistive

load will reduce the overall resistance and, in this way, it will strengthen

the inequality (2.24) and, consequently, reduce the ripple in the dc output

voltage.

The current i(t) is an almost dc current and is equal to

i(t) ≈ 2Vms
πR

, (2.40)

when the inductance is sufficiently large. It is clear that this current co-

incides with the current is(t) through the sinusoidal voltage source during

its positive half-cycle (that is, when diodes D1 and D3 conduct). During

the negative half-cycle of vs(t), that is, when diodes D2 and D4 conduct,

these two currents have opposite directions. This implies that the current

is(t) has the time variations shown in Figure 2.5. This clearly results in

higher-order harmonics contaminating the ac network supplying power to

the rectifier. This type of harmonics contamination is typical for power

electronics converters.

The dc voltage output of the rectifier shown in Figure 2.1 is fixed and

not controllable. This output voltage may be above or may be below the

desired dc voltage. A certain level of adjustment of dc output voltage can

be achieved by using a center-tapped transformer rectifier shown in Figure

2.6, where the primary voltage of the transformer is the input ac voltage

vs(t) of the rectifier:

v1(t) = vs(t) = Vms sinωt. (2.41)

As in the previous analysis of the bridge rectifier, the first step in the anal-

ysis of the center-tapped transformer rectifier is to replace the ac voltage
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Fig. 2.5

Fig. 2.6

Fig. 2.7

source, transformer and two diodes by the equivalent voltage source veq(t).

This leads to the reduction of the circuit shown in Figure 2.6 to the equiv-

alent circuit shown in Figure 2.7. The equivalent voltage source veq(t) is

equal at any instant of time to the actual voltage between nodes “a” and

“b” in the actual rectifier circuit. To find this voltage between nodes “a”

and “b,” we shall use the model of the ideal transformer (see Chapter 3 of
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Fig. 2.8

Part II). According to this model, we find

v1(t)

v2(t)
= a =

N1

N2
. (2.42)

By using formulas (2.41) and (2.42), we conclude that the voltage across

the terminals of the secondary winding of the transformer is equal to

v2(t) =
N2

N1
Vms sinωt. (2.43)

This voltage is plotted in Figure 2.8a. It is clear from Figure 2.6 that during

the positive half-cycle of v2(t) the diode D1 is in the “on” state, while the

diode D2 is in the “off” state. This implies that the voltage between nodes

“a” and “b” has positive polarity and it is equal to one half of the secondary

voltage v2(t). During the negative half-cycle of v2(t), the diode D2 is in the

“on” state, while the diode D1 is in the “off” state. This implies that the

voltage between nodes “a” and “b” retains the same positive polarity (i.e.,

the polarity opposite to v2(t)) and it is equal to one half of −v2(t). Thus,
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we can conclude that

veq(t) = vab(t) =
N2

2N1
Vms| sinωt|, (2.44)

as shown in Figure 2.8b. Having found veq(t), we can proceed to the analysis

of the equivalent circuit shown in Figure 2.7. It is clear that this analysis

is mostly identical to the analysis of the electric circuit shown in Figure

2.2 where veq(t) is defined by formula (2.2). The only difference is in the

peak value of veq(t). This means that the expression for vout(t) for the

center-tapped transformer rectifier can be found by using formula (2.23)

and by replacing Vms in this formula by N2

2N1
Vms. This also means that

for sufficiently large inductance L in the circuit shown in Figure 2.6, the

output voltage vout(t) is practically constant and it is given by the formula

vout(t) ≈
N2

πN1
Vms. (2.45)

It is apparent from the last formula that by properly choosing the ratio

N2/N1 the desired level of dc output voltage vout(t) can be achieved.

2.2 Single-Phase Rectifiers with RC and RLC Loads

In the previous section, we have discussed single-phase full-wave rectifiers

with RL loads and have stressed that sufficiently large values of inductances

are usually needed to effectively suppress ripples in the output voltage and

to make this voltage practically constant in time. Hardware realizations of

large inductances may lead to expensive and heavy rectifier designs. For

this reason, it may be of interest to use capacitors for ripple suppression in

the design of rectifiers. Such designs are discussed in this section.

We shall begin with the discussion of full-wave diode bridge rectifiers

with RC loads shown in Figure 2.9. The only design difference in compari-

son with rectifiers shown in Figure 2.1 is the replacement of the RL branch

by an RC branch with parallel connection of the capacitor and resistor.

Here, as before,

vs(t) = Vms sinωt (2.46)

and the intent of this design is to achieve practically constant output voltage

vout(t) across the terminals of the resistor. The first step in the analysis of

this rectifier is to replace the given ac voltage source and four diodes by the

equivalent voltage source veq(t). This is done by using the same reasoning
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Fig. 2.9

Fig. 2.10

as in the previous section and the resulting equivalent electric circuit is

shown in Figure 2.10 with

veq(t) = Vms| sinωt|. (2.47)

At first glance it may seem from this circuit that the capacitor has no effect

on ripple suppression because the output voltage vout(t) is equal to veq(t)

and, consequently, the output voltage has the same (100%) level of ripple as

veq(t). However, this is not the case. The reason is that the circuit shown

in Figure 2.10 is not valid for all times. It is only valid for time intervals

when

i(t) > 0. (2.48)
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Fig. 2.11

Indeed, the negative current flow (i.e., the current i(t) flow in the direction

opposite to the one marked on Figures 2.9 and 2.10) is prohibited by the

diodes D1 and D2 which may conduct only in the directions from nodes 1

and 3, respectively, towards the node 2. This implies that for time intervals

when

i(t) = 0 (2.49)

the performance of the rectifier is described by the circuit shown in Fig-

ure 2.11. Indeed, when the current i(t) in the circuit shown in Fig-

ure 2.10 reaches zero, the current iC(t) is negative, while the current

iR(t) = veq(t)/R is always positive. The negative current through the

capacitor implies that for i(t) = 0 the capacitor is discharged through the

resistor as represented by the circuit shown in Figure 2.11.

The presented discussion can be summarized as follows. The operation

of the rectifier shown in Figure 2.9 consists of two distinct and periodically

repeated regimes: regime 1, when the current i(t) is positive and the capac-

itor is charged according to the circuit shown in Figure 2.10; and regime

2, when the current i(t) is equal to zero and the capacitor is discharged

through the resistor as shown in Figure 2.11. These two regimes are peri-

odically repeated as graphically illustrated by Figure 2.12. In this figure,

the first regime occurs during the time interval

t0 < t < t1 <
π

ω
(2.50)

when (see Figure 2.10)

vout(t) = vC(t) = veq(t), (2.51)

while the second regime occurs during the time interval

t1 < t < t2 = t0 +
π

ω
(2.52)

and (see Figure 2.11)

vout(t) = vC(t). (2.53)
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Fig. 2.12

Thus, in order to find vout(t) we need to find expressions for t0, t1 and for

vC(t) during the time interval specified by formula (2.52). To do this, we

shall initially consider the first regime. According to Figure 2.10, we find

i(t) = iC(t) + iR(t). (2.54)

It is clear that

iC(t) = C
dvC(t)

dt
, (2.55)

iR(t) =
vC(t)

R
. (2.56)

For the time interval defined in (2.50), we have

vC(t) = veq(t) = Vms sinωt. (2.57)

By combining formulas (2.54), (2.55), (2.56) and (2.57) we derive

i(t) = ωCVms cosωt+
Vms
R

sinωt. (2.58)

At time t1 the current i(t) reaches zero,

i(t1) = 0. (2.59)

Consequently,

ωCVms cosωt1 +
Vms
R

sinωt1 = 0, (2.60)

which yields

tanωt1 = −ωCR. (2.61)
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The last equation can be solved for t1:

t1 =
π

ω
− 1

ω
arctan ωCR. (2.62)

Now, we consider the second regime. According to Figure 2.11, we find

vC(t)− vR(t) = 0, (2.63)

iC(t) = −iR(t), (2.64)

which leads to

dvC(t)

dt
+

1

RC
vC(t) = 0. (2.65)

A general solution of the last equation is given by the formula

vC(t) = Ae−
t
RC , (2.66)

where the constant A can be found from the initial condition

vC(t1) = Vms sinωt1 = Ae−
t1
RC . (2.67)

This leads to

A = Vmse
t1
RC sinωt1. (2.68)

By substituting the last expression for A into formula (2.66), we find

vC(t) = Vmse
t1−t
RC sinωt1. (2.69)

Next, we shall discuss how to find t0. Since vC(t) is periodic with period
T
2 = π

ω , we find

vC(t0) = vC(t2) = vC

(
t0 +

π

ω

)
. (2.70)

It is clear that

vC(t0) = Vms sinωt0, (2.71)

while

vC

(
t0 +

π

ω

)
= Vmse

t1−t0−
π
ω

RC sinωt1. (2.72)

By substituting the last two formulas into equation (2.70), we obtain

Vms sinωt0 = Vmse
t1−t0−

π
ω

RC sinωt1. (2.73)

This leads to

e
t0
RC sinωt0 = e

t1−
π
ω

RC sinωt1. (2.74)
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Since t1 can be determined by using the relation (2.62), the last formula

can be regarded as an equation for t0. As soon as t0 and t1 are found, the

following expression can be used for the computation of vout(t):

vout(t) =

{
Vms sinωt, if t0 < t < t1,

Vmse
t1−t
RC sinωt1, if t1 < t < t0 + π

ω .
(2.75)

Finally, we shall demonstrate that under the condition

RC � π

ω
, (2.76)

the output voltage vout is almost constant and

vout(t) ≈ Vms. (2.77)

Indeed, since t0 and t1 belong to the time interval (0, π/ω), from inequality

(2.76) we find

e
t0
RC ≈ 1, (2.78)

e
t1−

π
ω

RC ≈ 1. (2.79)

This implies that equation (2.74) can be reduced to

sinωt0 ≈ sinωt1, (2.80)

which leads to the conclusion that

ωt0 ≈ π − ωt1. (2.81)

On the other hand, from inequality (2.76) follows that

arctan ωRC ≈ π

2
, (2.82)

which, according to equation (2.62), yields

t1 ≈
π

2ω
. (2.83)

From formulas (2.81) and (2.83) we find

t0 ≈
π

2ω
. (2.84)

Thus, it follows from formulas (2.75), (2.83) and (2.84) that under the

condition (2.76) the first regime of capacitor charging is quite short, while

during the second regime the capacitor discharges very slowly. This is

illustrated by Figure 2.13, which implies that under the condition (2.76)

the output voltage vout(t) is given by formula (2.77). A shortcoming of the



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 406

406 Fundamentals of Electric Power Engineering

Fig. 2.13

Fig. 2.14

rectifier shown in Figure 2.9 is that the current is(t) through the voltage

source vs(t) occurs during short time intervals as illustrated by Figure 2.14.

This clearly results in strong higher-order harmonics contamination of the

ac network supplying power to the rectifier. Another shortcoming of this

rectifier is that its output dc voltage is fixed and it is equal to the peak

value of the ac voltage source, and this level of dc voltage may not be

desired. It turns out that a desired value of dc output voltage can be

obtained by using the center-tapped transformer rectifier shown in Figure

2.15. By replacing the ac voltage source, transformer and two diodes by

the equivalent voltage source veq(t), the analysis of this rectifier is reduced

to the analysis of the equivalent circuits for “charging” and “discharging”

regimes shown in Figures 2.16a and 2.16b, respectively. By using the same
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Fig. 2.15

Fig. 2.16

line of reasoning as in the discussion of the rectifier presented in Figure 2.6

(see the previous section), we conclude that

veq(t) =
N2

2N1
Vms| sinωt|, (2.85)

where N1 and N2 are the numbers of turns of the primary and secondary

windings of the transformer, respectively. Now, it is apparent that the

analysis of the rectifier shown in Figure 2.15 is mostly identical to the

analysis of the bridge rectifier presented in Figure 2.9; the only difference is

that the peak value Vms in the previous relevant formulas must be replaced

by the value N2

2N1
Vms. This leads to the conclusion that under the condition

(2.76) the output dc voltage of the rectifier shown in Figure 2.15 is given

by the formula

vout(t) ≈
N2

2N1
Vms. (2.86)
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Fig. 2.17

Fig. 2.18

It is apparent from the last formula that the desired value of dc output

voltage can be achieved by the proper choice of turns ratio N2/N1.

In the conclusion of this section, we consider the bridge rectifier with

RLC load shown in Figure 2.17. By using the same line of reasoning as

before, the four diodes and ac voltage source can be replaced by the equiv-

alent voltage source veq(t). This leads to the equivalent circuit shown in

Figure 2.18 with

veq(t) = Vms| sinωt|, (2.87)

which is graphically illustrated in Figure 2.3b. The steady-state analysis
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of this circuit is carried out in section 2.3 of Part I (see Example 2), where

it is demonstrated that this analysis can be reduced to the solution of the

differential equation

LC
d2vC(t)

dt2
+
L

R

dvC(t)

dt
+ vC(t) = Vms sinωt (2.88)

subject to periodic boundary conditions

vC(0) = vC

(π
ω

)
, (2.89)

dvC
dt

(0) =
dvC
dt

(π
ω

)
. (2.90)

It is demonstrated in section 2.3 of Part I that the solution of boundary

value problem (2.88), (2.89) and (2.90) is given by the following formulas:

vout(t) = vC(t) = A1e
s1t +A2e

s2t +
VmsR√

(ω2LC − 1)2R2 + ω2L2
sin(ωt− ϕ),

(2.91)

where

tanϕ =
ωL

R− ω2LCR
, (2.92)

s1 = − 1

2RC
+

√
1

4R2C2
− 1

LC
, (2.93)

s2 = − 1

2RC
−
√

1

4R2C2
− 1

LC
, (2.94)

A1 =
2RVms(s2 sinϕ+ ω cosϕ)

(s2 − s1)
(

1− e
s1π
ω

)√
(ω2LC − 1)2R2 + ω2L2

, (2.95)

A2 =
2RVms(s1 sinϕ+ ω cosϕ)

(s1 − s2)
(

1− e
s2π
ω

)√
(ω2LC − 1)2R2 + ω2L2

. (2.96)

By averaging all terms of equation (2.88) over one period π
ω and by using

the periodic boundary conditions (2.89) and (2.90), it can be shown (in the

same way as in the derivation of formula (2.38)) that

vout(t) = vC(t) =
2

π
Vms. (2.97)

This formula for the average value of output voltage is valid for any parame-

ters R, L and C. Subtracting this formula from equation (2.91), the explicit

analytical expression for the ripple in the output voltage is obtained. It can
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Fig. 2.19

be shown that this ripple will be quite small if the parameters R, L and C

are chosen in such a way that

ω2LC � 1, (2.98)

ωRC � 1. (2.99)

Indeed, under these conditions√
(ω2LC − 1)2R2 + ω2L2 ≈ ω2LCR, (2.100)

tanϕ ≈ 0 (2.101)

and ∣∣es1t∣∣ ≈ ∣∣es2t∣∣ ≈ 1 (2.102)

for 0 < t < π
ω . By using formulas (2.98)-(2.102) and the same line of

reasoning as in the derivation of relation (2.32), it can be shown that from

equations (2.91)-(2.96) follows that

vout(t) ≈
2

π
Vms. (2.103)

An example of calculation of vout(t) under conditions (2.98) and (2.99) is

shown in Figure 2.19.

It can also be remarked that, in the case of small ripple, the current

is(t) through the voltage source vs(t) is the same as shown in Figure 2.5.

This implies that higher-order harmonics contamination of the ac power

network is not as severe as in the case of the rectifier shown in Figure 2.9

for which is(t) is represented by Figure 2.14.
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2.3 Three-Phase Diode Rectifiers

In the previous two sections, single-phase diode rectifiers have been dis-

cussed. In these rectifiers, the equivalent voltage sources veq(t) which re-

place diodes and single-phase ac sources have constant polarity but large

(100%) ripple. The latter means that the range of variation of veq(t) is from

zero to some peak value. For this reason, sufficiently large energy storage

elements are needed to effectively suppress this ripple and to achieve more

or less constant in time output voltage. It turns out that equivalent volt-

age sources veq(t) with appreciably smaller ripples can be achieved by using

three-phase rectifiers.

We shall start with the discussion of the three-phase rectifiers with

three diodes shown in Figure 2.20. Such rectifiers are also called half-wave

or three-pulse rectifiers. In this figure, va(t), vb(t) and vc(t) are three-phase

star-connected voltage sources that have the same peak values Vms and the

same frequency ω, but are phase-shifted in time with respect to one another

by 2π
3 :

va(t) = Vms cosωt, (2.104)

vb(t) = Vms cos

(
ωt− 2π

3

)
, (2.105)

Fig. 2.20
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vc(t) = Vms cos

(
ωt− 4π

3

)
. (2.106)

The first step in the analysis of this rectifier is to make equivalent replace-

ment of the three ac voltage sources and three diodes by one equivalent

voltage source veq(t) and to reduce the circuit shown in Figure 2.20 to the

equivalent circuit shown in Figure 2.21. It is clear that the circuit shown in

Figure 2.21 is equivalent to the circuit shown in Figure 2.20 if and only if

at any instant of time t the equivalent voltage veq(t) is equal to the actual

voltage between nodes 1 and 2 in the original circuit shown in Figure 2.20.

To find this actual voltage, it is necessary to figure out the time intervals

when these three diodes are in “on” or “off” states. To this end, the plots of

the three-phase voltages va(t), vb(t) and vc(t) are presented in Figure 2.22a.

It is apparent from this figure that for the time interval − π
3ω < t < π

3ω the

anode of diode D1 is at the highest positive potential in the circuit. For this

reason, the diode D1 is in the “on” state in the above time interval, while

the diodes D2 and D3 are in the “off” state. Any other option results in

contradiction. Indeed, assuming, for instance, that during the above time

interval diode D2 is in the “on” state while diode D1 is in the “off” state

implies that the potential of node 1 and, consequently, the potential of the

cathode of diode D1, is equal to vb(t), which is less than va(t). The latter

means that the diode D1 must be in the “on” state, and this precludes the

diode D2 being in the “on” state. By using the same line of reasoning, it

can be concluded that during the time interval π
3ω < t < π

ω the diode D2

is in the “on” state, while the diodes D1 and D3 are in the “off” state.

Similarly, during the time interval π
ω < t < 5π

3ω the diode D3 is in the “on”

state, while the diodes D1 and D2 are in the “off” state. The above discus-

sion implies that the voltage between nodes 1 and 2 in the circuit shown

in Figure 2.20 is equal sequentially to the phase voltages va(t), vb(t) and

vc(t) for the time intervals − π
3ω < t < π

3ω , π
3ω < t < π

ω and π
ω < t < 5π

3ω ,

Fig. 2.21
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Fig. 2.22

respectively. This means that the equivalent voltage source veq(t) can be

represented by the plot shown in Figure 2.22b.

It is clear that the ripple of veq(t) shown in Figure 2.22b is 50% if this

ripple is measured as

ripple veq(t) =
max veq(t)−min veq(t)

max veq(t)
· 100%. (2.107)
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To conclude the analysis of the three-phase rectifier shown in Figure

2.20, it is necessary to find the steady state in the equivalent circuit shown

in Figure 2.21 with veq(t) given by the plot in Figure 2.22b. Since veq(t) is

periodic with period 2π
3ω , we consider only one period

− π

3ω
< t <

π

3ω
(2.108)

and write KVL equation

L
di(t)

dt
+Ri(t) = veq(t). (2.109)

For the period defined by formula (2.108),

veq(t) = va(t) = Vms cosωt (2.110)

and equation (2.109) can be represented in the form

L
di(t)

dt
+Ri(t) = Vms cosωt. (2.111)

The steady state satisfies the periodic boundary conditions

i
(
− π

3ω

)
= i
( π

3ω

)
. (2.112)

As before, a general solution of equation (2.111) has two distinct compo-

nents,

i(t) = ip(t) + ih(t), (2.113)

where ip(t) is a particular solution of the inhomogeneous equation (2.111)

which can be identified with the ac steady state in the circuit shown in

Figure 2.21 excited by the voltage Vms cosωt. This steady state is given by

the formulas

ip(t) =
Vms√

R2 + ω2L2
cos(ωt− ϕ), (2.114)

tanϕ =
ωL

R
. (2.115)

The second component ih(t) in formula (2.113) is a general solution of the

corresponding homogeneous equation. It is easy to see that

ih(t) = Ae−
R
L t, (2.116)

where A is some constant.
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By substituting formulas (2.114) and (2.116) into equation (2.113), we

find

i(t) =
Vms√

R2 + ω2L2
cos(ωt− ϕ) +Ae−

R
L t. (2.117)

The constant A can be found from the periodic boundary condition (2.112),

which leads to the following equation for A:

Vms cos
(
π
3 + ϕ

)
√
R2 + ω2L2

+Ae
πR
3ωL =

Vms cos
(
π
3 − ϕ

)
√
R2 + ω2L2

+Ae−
πR
3ωL . (2.118)

By taking into account that

cos
(π

3
− ϕ

)
− cos

(π
3

+ ϕ
)

=
√

3 sinϕ, (2.119)

from equation (2.118) we derive

A =

√
3Vms sinϕ

2 sinh πR
3ωL

√
R2 + ω2L2

. (2.120)

By substituting the last relation into formula (2.117), we find

i(t) =
Vms√

R2 + ω2L2
cos(ωt− ϕ) +

√
3Vms sinϕ

2 sinh πR
3ωL

√
R2 + ω2L2

e−
R
L t. (2.121)

It is clear that

vout(t) = i(t)R, (2.122)

which leads to

vout(t) =
VmsR√

R2 + ω2L2
cos(ωt− ϕ) +

√
3VmsR sinϕ

2 sinh πR
3ωL

√
R2 + ω2L2

e−
R
L t.

(2.123)

Next, we shall demonstrate that under the condition

ωL� R (2.124)

the output voltage vout(t) is practically constant and equal to

vout(t) ≈
3
√

3

2π
Vms. (2.125)

Indeed, from (2.124) follows that√
R2 + ω2L2 ≈ ωL, (2.126)
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R√
R2 + ω2L2

≈ R

ωL
≈ 0. (2.127)

This means that the first term in the right-hand side of formula (2.123) is

negligible. Now, we shall evaluate the second term of this right-hand side.

From formulas (2.115) and (2.124), we conclude

ϕ ≈ π

2
and sinϕ ≈ 1. (2.128)

Furthermore, the inequality (2.124) implies that

sinh
πR

3ωL
≈ πR

3ωL
. (2.129)

It is clear that

e
πR
3ωL > e−

R
L t > e−

πR
3ωL , (2.130)

which, according to the inequality (2.124), means that in the time interval

(2.108) we have

e−
R
L t ≈ 1. (2.131)

By using formulas (2.126), (2.128), (2.129) and (2.131), it is easy to con-

clude that the second term in the right-hand side of equation (2.123) is

practically constant and equal to 3
√

3
2π Vms. Thus, formula (2.125) is estab-

lished.

It is easy to demonstrate that the average value vout(t) is given by the

formula

vout(t) =
3
√

3

2π
Vms ≈ 0.827Vms. (2.132)

Indeed, by writing equation (2.111) in the form

L
di(t)

dt
+ vout(t) = Vms cosωt, (2.133)

by averaging all terms of the last equation over one period
(
− π

3ω ,
π
3ω

)
and

taking into account the periodic boundary conditions (2.112), we derive

vout(t) = Vms
3ω

2π

∫ π
3ω

− π
3ω

cosωtdt, (2.134)

which leads to formula (2.132).

It is worthwhile to point out that formula (2.132) is valid for any values

of parameters in the rectifier circuit in Figure 2.20. By subtracting formula

(2.132) from formula (2.123), we obtain the analytical expression for the
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Fig. 2.23

output voltage ripple, which can be used for ripple evaluation for any values

of L and R.

As discussed above, the ripple of veq(t) for the three-phase rectifier

shown in Figure 2.20 is 50%. It turns out that this ripple can be sub-

stantially reduced by using the three-phase bridge rectifier shown in Figure

2.23. Such rectifiers are also called six-pulse rectifiers. As before, the first

step in the analysis of this rectifier is to make the equivalent replacement

of the three-phase voltage sources and six diodes by the equivalent volt-

age source veq(t). This replacement leads to the equivalent electric circuit

shown in Figure 2.24. The equivalent voltage source veq(t) must be equal

at any instant of time t to the actual voltage between nodes 1 and 2 in

the original circuit shown in Figure 2.23. To find this actual voltage, the

conduction pattern of the six diodes must first be understood. By using

the same line of reasoning as in the discussion of the three-diode rectifier

shown in Figure 2.20, it can be shown that at any instant of time t only

one of the three diodes D1, D2 and D3 is in the “on” state, while the other
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Fig. 2.24

two diodes are in the “off” state. The diode which is in the “on” state at

time t is connected to the line (i.e., voltage source) with the highest positive

potential at time t. Similarly, at any instant of time t only one of the three

diodes D4, D5 and D6 is in the “on” state, while the other two diodes are in

the “off” state. The diode which is in the “on” state at time t is connected

to the line (i.e., voltage source) with the most negative potential at time

t. Thus, it is clear that the voltage between nodes 1 and 2 in the circuit

in Figure 2.23 is always equal to one of the line voltages, namely, to the

line voltage with largest positive value at time t. The specific line voltage

appearing across nodes 1 and 2 at time t is determined by the conduction

pattern of the six diodes at this instant of time t. This diode conduction

pattern can now be discerned by using the plots of voltages va(t), vb(t)

and vc(t) shown in Figure 2.22a. It is clear according to this figure that

during the time interval 0 < t < π
3ω diodes D1 and D6 are connected to the

lines with the most positive (line a) and most negative (line c) potentials,

respectively. For this reason, these diodes are in the “on” state and the line

voltage vac(t) appears between nodes 1 and 2. During the time interval
π
3ω < t < 2π

3ω , diodes D2 and D6 are in the “on” state and the line voltage

vbc(t) appears between nodes 1 and 2. The diode conduction patterns at

other time intervals are similarly determined and they are illustrated in

Figure 2.25 along with the plot of veq(t). By using the phasor diagram for

phase and line voltages, it is easy to find that

vac(t) = −vca(t) =
√

3Vms cos
(
ωt− π

6

)
, (2.135)

vbc(t) = −vcb(t) =
√

3Vms cos
(
ωt− π

2

)
, (2.136)

vba(t) = −vab(t) =
√

3Vms cos

(
ωt− 5π

6

)
. (2.137)

It is clear that

vac(0) = vac

( π
3ω

)
=
√

3Vms cos
π

6
=

3

2
Vms, (2.138)
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which implies that

ripple veq(t) =

√
3Vms − 3

2Vms√
3Vms

· 100% ≈ 13.4%. (2.139)

Thus, in the case of the three-phase bridge rectifier the ripple of veq(t) is

appreciably reduced.

Having found veq(t), we can now proceed to the analysis of the steady

state in the electric circuit shown in Figure 2.24. We consider one period

of veq(t),

0 < t <
π

3ω
. (2.140)

For this time interval, the analysis of the steady state can be reduced to

the following boundary value problem:

L
di(t)

dt
+Ri(t) =

√
3Vms cos

(
ωt− π

6

)
, (2.141)

i(0) = i
( π

3ω

)
. (2.142)

A general solution of equation (2.141) can be written in the form

i(t) =

√
3Vms√

R2 + ω2L2
cos
(
ωt− π

6
− ϕ

)
+Ae−

R
L t, (2.143)

tanϕ =
ωL

R
. (2.144)
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By using the periodic boundary conditions (2.142), we end up with the

following equation for A:
√

3Vms cos
(
π
6 + ϕ

)
√
R2 + ω2L2

+A =

√
3Vms cos

(
π
6 − ϕ

)
√
R2 + ω2L2

+Ae−
πR
3ωL . (2.145)

By solving this equation for A and taking into account that

cos
(π

6
− ϕ

)
− cos

(π
6

+ ϕ
)

= sinϕ, (2.146)

we find

A =

√
3Vms sinϕ(

1− e− πR
3ωL

)√
R2 + ω2L2

. (2.147)

By substituting the last formula into equation (2.143), we end up with

i(t) =

√
3Vms√

R2 + ω2L2
cos
(
ωt− π

6
− ϕ

)
+

√
3Vms sinϕ(

1− e− πR
3ωL

)√
R2 + ω2L2

e−
R
L t.

(2.148)

This leads to the following final expression for the output voltage:

vout(t) =

√
3VmsR√

R2 + ω2L2
cos
(
ωt− π

6
− ϕ

)
+

√
3VmsR sinϕ(

1− e− πR
3ωL

)√
R2 + ω2L2

e−
R
L t. (2.149)

It is remarkable that the complicated circuit shown in Figure 2.23 admits

such a simple analytical solution. By using this solution, it can be shown

that under the condition

ωL� R (2.150)

the output voltage is almost constant in time and it is given by the formula

vout(t) ≈
3
√

3

π
Vms. (2.151)

The derivation is performed in the same way as in the case of the rectifier

shown in Figure 2.20 and is left as a useful exercise for the reader.

By averaging both sides of equation (2.141) over one period
(
0, π3ω

)
, it

can be found that, as expected,

vout(t) =
3
√

3

π
Vms ≈ 1.65Vms. (2.152)
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By subtracting formula (2.152) from formula (2.149), the analytical ex-

pression for the ripple of the output voltage is found and can be used for

evaluation of this ripple for any values of L and R. The clear advantage of

the three-phase rectifiers shown in Figures 2.20 and 2.23 is that they lead

to appreciable reduction in the ripple of veq(t). A shortcoming of these

rectifiers is that the levels of the output dc voltages are fixed and given by

formulas (2.132) and (2.152), respectively. These levels can be adjusted by

using three-phase transformers in the rectifier designs. It turns out that

the use of three-phase transformers opens the opportunities for further re-

duction of ripple of veq(t). We shall present below one such rectifier design

shown in Figure 2.26. This rectifier is also called a twelve-pulse rectifier.

In this rectifier, there are two three-phase transformers with Y-Y and Y-∆
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connectivity of primary and secondary windings as well as two three-phase

diode bridges connected in series. Across nodes 1 and 2 as well as nodes 3

and 4 the line voltages from the secondary windings of the Y-∆ and Y-Y

transformers appear, respectively. By using the proper choice of turns ra-

tios of these transformers, the desired and equal peak values V
(2)
ms of their

secondary line voltages can be achieved. However, these line voltages will

be relatively phase-shifted in time by π
6 (see Chapter 3 of Part II). Thus, at

any time instant t the voltage between nodes 1 and 4 (i.e., veq(t)) is equal

to the sum of the line voltages of equal peak values but phase-shifted in

time by π
6 . This implies that veq(t) is periodic with period π

6ω and for the

time interval

0 < t <
π

6ω
(2.153)

the equivalent voltage veq(t) is equal to

veq(t) = V (2)
ms cosωt+ V (2)

ms cos
(
ωt− π

6

)
. (2.154)

By using simple trigonometry, the last formula can be transformed as fol-

lows:

veq(t) = 2V (2)
ms cos

π

12
cos
(
ωt− π

12

)
. (2.155)

It can be found from the last equation that

ripple veq(t) =
veq
(
π

12ω

)
− veq(0)

veq
(
π

12ω

) · 100% =
(

1− cos
π

12

)
· 100% < 4%.

(2.156)

Thus, the ripple of veq(t) is quite small. By using the same technique

as frequently employed in this chapter, a simple analytical expression for

vout(t) can be derived. This derivation is left as a useful exercise for the

reader.

The rectifier presented in Figure 2.26 has two three-phase transformers.

In practice, a single three-phase transformer with two sets of secondary

windings connected in Y and ∆ can be used. These two sets of secondary

windings are connected to two bridge rectifiers and the basic operation of

such rectifiers is identical to the operation of the rectifier shown in Figure

2.26.

2.4 Phase-Controlled Rectifiers

In the previous sections of this chapter, diode rectifiers have been discussed.

In these rectifiers, the output dc voltages are fixed and non-controllable.
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Fig. 2.27

The controllability of output dc voltages can be achieved by replacing diodes

by thyristors (SCRs). This results in so-called phase-controlled rectifiers,

which are discussed in this section.

We start with the discussion of the full-wave phase-controlled rectifier

whose electric circuit is presented in Figure 2.27. This circuit is obtained

from the electric circuit of the full-wave diode bridge rectifier (see Figure

2.1b) by replacing the four diodes by thyristors (SCRs) and by introducing

a diode across the nodes 2 and 4. This diode is called a freewheeling diode

(FWD). This diode prevents the appearance of negative voltages across

nodes 2 and 4 which otherwise may occur in this circuit. Indeed, this

negative voltage would correspond to forward bias of this diode and result

in its switching into the “on” (conduction) state with zero voltage across

it. This freewheeling diode also provides an alternative path for the load

current i(t) and, in this way, it is instrumental in maintaining the continuity

in time of this current. It is furthermore clear that in the case of positive

polarity of the voltage across nodes 2 and 4 the freewheeling diode is reverse

biased, and it is in the “off” state. The current conduction path in this case

goes through SCR1 and SCR3 or SCR2 and SCR4.
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Fig. 2.28

As before, the first step in the analysis of the rectifier shown in Figure

2.27 is to make the equivalent replacement of the ac voltage vs(t), the

four SCRs and the freewheeling diode by the voltage source veq(t). This

replacement results in the equivalent electric circuit shown in Figure 2.28.

It is clear that the equivalent voltage source veq(t) must be equal at any

instant of time t to the actual voltage between nodes 2 and 4 in the original

circuit shown in Figure 2.27. To find this voltage, the conduction patterns

of the SCRs and the freewheeling diode must be first determined. To this

end, we turn to the plot of sinusoidal voltage of the source vs(t) shown in

Figure 2.29a and consider the positive half-cycle of this voltage in the time

interval 0 < t < π
ω . In the case of the diode bridge rectifier (see Figure 2.1b),

diodes D1 and D3 become immediately forward biased with the advent of

this half-cycle and are immediately turned on. This is not the case for SCR1

and SCR3 in the electric circuit shown in Figure 2.27. These SCRs will

remain in the “off” (forward-blocking) state until triggering currents are

pulsed through their gates at some time t0 = α
ω . This implies that SCR2

and SCR4 triggered during the preceding negative half-cycle of vs(t) tend

to remain in the “on” state with the advent of the positive half-cycle and

this leads to the appearance of negative polarity voltage across the nodes

2 and 4. As a result, the freewheeling diode becomes forward biased and

starts conducting, resulting in zero voltage across nodes 2 and 4 as shown in

Figure 2.29b. As soon as SCR1 and SCR3 are turned on by current pulses

through their gates at time t0 = α
ω , the voltage vs(t) of positive polarity

appears across the nodes 2 and 4, and the freewheeling diode is turned off.

This means that veq(t) replicates vs(t) during the time interval t0 < t < π
ω

as shown in Figure 2.29b. With the advent of the next negative half-cycle,

the freewheeling diode is again turned on to prevent the appearance of

negative polarity voltage across the nodes 2 and 4 and it remains in the

“on” state until SCR2 and SCR4 are triggered by current pulses through

their gates at the time t0 + π
ω . The discussed conduction pattern of SCRs
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and the freewheeling diode is periodically repeated resulting in veq(t) shown

in Figure 2.29b.

Now, having determined veq(t), we shall proceed to the analysis of the

steady state in the equivalent circuit shown in Figure 2.28. As discussed

before in this chapter, it is sufficient to carry out this analysis for one period

0 < t <
π

ω
(2.157)

and then periodically extend the found expression for vout(t) to other time

intervals.

The KVL equation for the circuit in Figure 2.28 can be written as

L
di(t)

dt
+Ri(t) = veq(t). (2.158)
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By using the plot of veq(t) shown in Figure 2.29b, we conclude that the last

equation can be written as the following two equations:

L
di(t)

dt
+Ri(t) = 0, if 0 < t < t0, (2.159)

L
di(t)

dt
+Ri(t) = Vms sinωt, if t0 < t <

π

ω
. (2.160)

The steady-state solution of the above equations must satisfy the periodic

boundary condition

i(0) = i
(π
ω

)
(2.161)

as well as the continuity condition

i(t0−) = i(t0+). (2.162)

A general solution of equation (2.159) can be written as

i(t) = A1e
−RL t, (0 < t < t0), (2.163)

where A1 is some constant. A general solution of equation (2.160) has the

form

i(t) =
Vms√

R2 + ω2L2
sin(ωt− ϕ) +A2e

−RL t,
(
t0 < t <

π

ω

)
, (2.164)

where

tanϕ =
ωL

R
(2.165)

and A2 is some constant.

To find constants A1 and A2, the periodicity condition (2.161) and con-

tinuity condition (2.162) can be used. This leads to the following simulta-

neous equations for A1 and A2:

A1 = A2e
−πRωL +

Vms sinϕ√
R2 + ω2L2

, (2.166)

A1e
−Rt0L = A2e

−Rt0L +
Vms sin(ωt0 − ϕ)√

R2 + ω2L2
. (2.167)

By solving the above equations, we find

A1 =
Vms

[
sinϕ− e

Rt0
L −

πR
ωL sin(ωt0 − ϕ)

]
(

1− e−πRωL
)√

R2 + ω2L2
, (2.168)

A2 =
Vms

[
sinϕ− e

Rt0
L sin(ωt0 − ϕ)

]
(

1− e−πRωL
)√

R2 + ω2L2
. (2.169)



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 427

Rectifiers 427

By substituting expressions (2.168) and (2.169) into formulas (2.163) and

(2.164), respectively, and taking into account that

vout(t) = Ri(t), (2.170)

we derive that for 0 < t < t0,

vout(t) =
VmsR

[
sinϕ− e

Rt0
L −

πR
ωL sin(ωt0 − ϕ)

]
(

1− e−πRωL
)√

R2 + ω2L2
e−

R
L t, (2.171)

while for t0 < t < π
ω ,

vout(t) =
VmsR√

R2 + ω2L2
sin(ωt− ϕ)

+
VmsR

[
sinϕ− e

Rt0
L sin(ωt0 − ϕ)

]
(

1− e−πRωL
)√

R2 + ω2L2
e−

R
L t (2.172)

and ϕ is defined by formula (2.165).

The last two formulas provide explicit analytical expressions for the

output voltage of the phase-controlled rectifier shown in Figure 2.27. Next,

we demonstrate that under the condition

ωL� R, (2.173)

this output voltage is practically constant in time. The demonstration is

in the same way as before.

From the inequality (2.173), we find√
R2 + ω2L2 ≈ ωL, (2.174)

R√
R2 + ω2L2

≈ 0, (2.175)

ϕ ≈ π

2
and sinϕ ≈ 1, (2.176)

sin(ωt0 − ϕ) ≈ − cosωt0 = − cosα, (2.177)

1− e−πRωL ≈ πR

ωL
, (2.178)

e
Rt0
L −

πR
ωL ≈ 1, (2.179)
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e−
R
L t ≈ 1 for 0 < t <

π

ω
. (2.180)

By using the last seven formulas to simplify the expressions (2.171) and

(2.172), it can be easily demonstrated that under the condition (2.173) we

have

vout(t) ≈
Vms
π

(1 + cosα). (2.181)

As expected, this approximate value of vout(t) coincides with its average

value. Indeed, by writing equations (2.159) and (2.160) in the form

L
di(t)

dt
+ vout(t) =

{
0, if 0 < t < t0,

Vms sinωt, if t0 < t < π
ω ,

(2.182)

then by averaging all terms of the last equation over the period
(
0, π

ω

)
and

taking into account the periodicity condition (2.161), we derive

vout(t) = Vms
ω

π

∫ π
ω

t0

sinωtdt, (2.183)

which leads to

vout(t) =
Vms
π

(1 + cosα), (2.184)

where as before α = ωt0. It is clear from formulas (2.181) and (2.184) that

by varying the timing t0 of triggering the SCRs the value of the output dc

voltage can be continuously controlled.

It can also be remarked that by using formulas (2.171), (2.172) and

(2.184) the ripple level in vout(t) can be computationally evaluated for any

values of R and L.

It is evident from formulas (2.181) and (2.184) that voltage vout(t) de-

pends on Vms. This suggests that the range of controllability of vout can be

properly adjusted by using a center-tapped transformer phase-controlled

rectifier shown in Figure 2.30. It is left as an exercise for the reader to

prove that for this rectifier

vout(t) =
N2

2πN1
Vms(1 + cosα) (2.185)

and

vout(t) ≈ vout(t) (2.186)

under the condition (2.173).
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Now we shall proceed to the discussion of the “six-pulse” bridge-

controlled rectifier shown in Figure 2.31. The circuit of this rectifier is

obtained from the circuit of the diode bridge rectifier shown in Figure 2.23

by replacing the six diodes by six SCRs and adding (when needed) the free-

wheeling diode D. This freewheeling diode shall prevent the appearance of

negative polarity voltage across the nodes 1 and 2. It turns out that such a

voltage may appear only if the “firing angle” of the SCRs exceeds π
3 , oth-

erwise the voltage across the nodes 1 and 2 has only positive polarity. The

first step in the analysis of this rectifier is to make the equivalent replace-

ment of the three-phase voltage sources, the six SCRs and diode D by the

voltage source veq(t). This replacement results in the equivalent electric cir-

cuit shown in Figure 2.32. It is apparent that the equivalent voltage source

veq(t) must be equal at any instant of time t to the actual voltage between

the nodes 1 and 2 in the original rectifier circuit shown in Figure 2.31. To

find this voltage, the conduction pattern of the SCRs must be determined.

To this end, we shall first recall that in the case of the three-phase diode

bridge rectifier shown in Figure 2.23 one of the three diodes D1, D2 and

D3 is turned on as soon as the potential of the line connected to this diode

assumes the highest positive value. Similarly, one of the three diodes D4,

D5 and D6 is turned on as soon as the potential of the line connected to

this diode assumes the most negative value. This is not the case for the

SCRs in the circuit shown in Figure 2.31. Indeed, one of the thyristors

SCR1, SCR2 and SCR3 is turned on while being connected to the line

with the highest potential only if a triggering current is pulsed through its

gate. Otherwise, this thyristor will be in the forward-blocking state and the

previously conducting thyristor of this group will remain in the “on” state.
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Fig. 2.31

Fig. 2.32

Similarly, if one of the thyristors SCR4, SCR5 and SCR6 is connected to

the line with the most negative potential it will be turned on only after a

triggering current is pulsed through its gate. Otherwise, this thyristor will

be in the forward-blocking state and the previously conducting thyristor of

this group will remain in the “on” state. In other words, for the rectifier
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Fig. 2.33

shown in Figure 2.23, at any instant of time t only those two diodes conduct

that connect the nodes 1 and 2 to the highest line voltage at time t. In the

case of the rectifier shown in Figure 2.31, the highest line voltage at time

t is applied across the nodes 1 and 2 only after the two SCRs connecting

this voltage to the nodes 1 and 2 have been turned on by current pulses

through their gates. Otherwise, the voltage between the nodes 1 and 2 is

the line voltage provided by the two previously triggered SCRs. By using

this remark, the equivalent voltage veq(t) can be determined by using the

plots of the line voltages as shown in Figure 2.33. It is seen from this figure

that if the “firing angle” α = ωt0 is less than π
3 then the equivalent voltage

veq(t) (i.e., voltage across the nodes 1 and 2) has positive polarity at any

time instant and the freewheeling diode is not needed. If α > π
3 , then as

is clear from Figure 2.33 the freewheeling diode D is needed to prevent the

appearance of the negative polarity line voltage across the nodes 1 and 2.

Having determined veq(t), we shall now proceed to the analysis of the

steady state in the equivalent circuit shown in Figure 2.32 for the case

0 < α < π
3 . We shall carry out this analysis for one period of veq(t),

namely, for the time interval

t0 < t < t0 +
π

3ω
,

(
t0 =

α

ω

)
, (2.187)

and then periodically extend the found expression for vout(t) to other time

intervals.

The KVL equation for the circuit in Figure 2.32 for the above time
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interval can be written as follows:

L
di(t)

dt
+Ri(t) =

√
3Vms cos

(
ωt− π

6

)
. (2.188)

The steady-state solution of the above equation must satisfy the periodic

boundary condition

i(t0) = i
(
t0 +

π

3ω

)
. (2.189)

A general solution to equation (2.188) can be written as

i(t) =

√
3Vms√

R2 + ω2L2
cos
(
ωt− π

6
− ϕ

)
+Ae−

R
L t, (2.190)

where, as before,

tanϕ =
ωL

R
(2.191)

and A is some constant. This constant is found from the boundary condition

(2.189), which leads to
√

3Vms cos
(
ωt0 − π

6 − ϕ
)

√
R2 + ω2L2

+Ae−
Rt0
L =

√
3Vms cos

(
ωt0 + π

6 − ϕ
)

√
R2 + ω2L2

+Ae−
Rt0
L e−

πR
3ωL . (2.192)

By using the simple identity

cos
(
ωt0 +

π

6
− ϕ

)
− cos

(
ωt0 −

π

6
− ϕ

)
= − sin(ωt0 − ϕ) (2.193)

and by solving equation (2.192) for A, we find

A = −
√

3Vms sin(ωt0 − ϕ)(
1− e− πR

3ωL

)√
R2 + ω2L2

e
R
L t0 . (2.194)

By substituting the last formula into equation (2.190) and taking into ac-

count that

vout(t) = Ri(t), (2.195)

we derive

vout(t) =

√
3VmsR√

R2 + ω2L2
cos
(
ωt− π

6
− ϕ

)
−

√
3VmsR sin(ωt0 − ϕ)(

1− e− πR
3ωL

)√
R2 + ω2L2

e−
R
L (t−t0). (2.196)
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By using the same line of reasoning as before, it can be shown that under

the condition

ωL� R (2.197)

the output voltage vout(t) is almost constant in time and

vout(t) ≈
3
√

3Vms
π

cosα. (2.198)

It can also be shown that

vout(t) =
3
√

3Vms
π

cosα. (2.199)

By varying α from 0 to π
3 , the output voltage vout(t) can be continuously

controlled within the range 3
√

3Vms
2π < vout(t) <

3
√

3Vms
π . It is apparent from

Figure 2.33 that this controllability is achieved at the expense of increasing

the level of ripple in the equivalent voltage source veq(t). Consequently,

larger values of inductance L are needed to suppress this ripple and to

achieve more or less constant value of output voltage vout(t).

It can be shown that by using the electric circuit shown in Figure 2.31

without the freewheeling diode D and for “firing angles” α > π
3 , the nega-

tive average value of voltage across the nodes 1 and 2 can be achieved, while

the direction of current i(t) due to the presence of the SCRs will remain the

same. This means that, under the mentioned conditions, the above circuit

operates as an inverter in the sense that power flow occurs from the dc side

to the ac side. The detailed discussion of this matter is beyond the scope

of this text.
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Chapter 3

Inverters

3.1 Single-Phase Bridge Inverter

In this chapter, some basic principles of dc-to-ac energy conversion are pre-

sented. The power electronics circuits that accomplish this conversion are

called inverters. The voltage-source inverters are discussed below. These

inverters convert energy from fixed dc voltage sources into ac energy with

voltages of desired and controllable frequencies and peak values. There are

also current-source inverters where input dc sources maintain more or less

constant currents. These inverters are not considered in this text. Their

structures are somewhat similar to those of controlled bridge rectifiers stud-

ied at the end of the previous chapter. It is maybe for this reason that the

term inverter is often used in literature for voltage-source inverters.

We begin with the discussion of the single-phase bridge inverter. The

electric circuit of such inverter is shown in Figure 3.1. This circuit contains

a dc voltage source V0 as an input, four switches SW1, SW2, SW3 and

SW4 on the four shoulders of the bridge and an LR branch with an output

voltage vout(t) designated as the voltage across the terminals of the resistor

R. The main challenge is to develop a proper strategy of switching that

results in sinusoidal voltage vout(t) of desired frequency and peak value.

It is clear that such a switching strategy should periodically invert the

polarity of the output voltage. This polarity inversion can be achieved

by periodically repeating the following two steps of switching: step #1 of

simultaneously turning SW1 and SW3 “on” and SW2 and SW4 “off”; and

step #2 of simultaneously turning SW1 and SW3 “off” and SW2 and SW4

“on.” It is apparent from Figure 3.1 that during the first step voltage V0 of

positive polarity appears across the nodes 1 and 2, while during the second

step voltage V0 of inverted (opposite) polarity appears across the nodes

435
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Fig. 3.1

Fig. 3.2

1 and 2. This implies that for the above described switching the electric

circuit shown in Figure 3.1 can be replaced by the equivalent circuit shown

in Figure 3.2. In this figure, the equivalent voltage source veq(t) is a periodic

train (sequence) of rectangular voltage pulses of alternating polarity. The

plot of veq(t) is shown in Figure 3.3. It is apparent that veq(t) is a function

of half-wave symmetry,

veq(t) = −veq
(
t+

T

2

)
. (3.1)

This means that at steady state the current i(t) in the electric circuit shown

in Figure 3.2 (as well as in the electric circuit shown in Figure 3.1) is a

function of half-wave symmetry,

i(t) = −i
(
t+

T

2

)
. (3.2)

By using the latter fact, we can formulate the steady-state analysis in the

above electric circuit as the following boundary value problem with “an-
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Fig. 3.3

tiperiodic” boundary condition:

L
di(t)

dt
+Ri(t) = V0, if 0 < t <

T

2
, (3.3)

i(0) = −i
(
T

2

)
. (3.4)

It is clear that the “antiperiodic” boundary condition (3.4) follows from

formula (3.2) by setting t equal to zero. It is also clear that after solving

the boundary value problem (3.3)-(3.4) for the time interval [0, T2 ], the

current i(t) can be extended to other time intervals by using the half-wave

symmetry expressed by formula (3.2).

It is evident that a general solution to the differential equation (3.3) can

be written in the form

i(t) =
V0

R
+Ae−

R
L t,

(
0 < t <

T

2

)
, (3.5)

where A is some constant that must be determined from the boundary

condition (3.4). Indeed, this boundary condition leads to the following

equation for A:

V0

R
+A = −V0

R
−Ae−RT2L . (3.6)

From the last formula, we find

A
(

1 + e−
RT
2L

)
= −2V0

R
, (3.7)
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which results in

A = − 2V0

R
(

1 + e−
RT
2L

) . (3.8)

By substituting this expression for A into formula (3.5), we obtain

i(t) =
V0

R

[
1− 2

1 + e−
RT
2L

e−
R
L t

]
, 0 ≤ t ≤ T

2
. (3.9)

By taking into account that

vout(t) = Ri(t), (3.10)

we then find

vout(t) = V0

[
1− 2

1 + e−
RT
2L

e−
R
L t

]
, 0 ≤ t ≤ T

2
. (3.11)

Having found vout(t) for the time interval [0, T2 ], we can extend vout(t)

to other time intervals through imposing the half-wave symmetry, i.e., by

using the formula

vout

(
t+

T

2

)
= −vout(t). (3.12)

Next, we shall perform some simple analysis of formulas (3.9) and (3.11).

From formula (3.9) we find that

i(0) =
V0

R

[
1− 2

1 + e−
RT
2L

]
. (3.13)

Since

e−
RT
2L < 1, (3.14)

we conclude from equation (3.13) that

i(0) < 0. (3.15)

According to formula (3.4), the last inequality implies that

i

(
T

2

)
= −i(0) > 0. (3.16)

From the last two inequalities and formula (3.10) follows that

vout(0) < 0, while vout

(
T

2

)
= −vout(0) > 0. (3.17)
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Fig. 3.4

By taking into account inequalities (3.15), (3.16) and (3.17) and using for-

mulas (3.9) and (3.11), the plots of i(t) and vout(t) can be constructed.

These plots are shown in Figures 3.4a and 3.4b, respectively. It is apparent

from Figure 3.4a that the current i(t) changes its sign and, consequently,

its direction of flow within each half-cycle. This fact has important impli-

cations concerning the design of the switches SW1, SW2, SW3 and SW4

shown in Figure 3.1. Indeed, single transistors are unidirectional (unilat-

eral) switches. For instance, a BJT conducts an electric current from emit-
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Fig. 3.5

ter to collector and, similarly, a power MOSFET (or IGBT) is designed

to conduct an electric current from drain to source. This implies that a

single transistor being in the “on” state cannot accommodate the flow of

electric current in two opposite directions as needed in order to realize the

current flow depicted in Figure 3.4a. It turns out that due to the presence

of the inductor in the circuit shown in Figure 3.1, bidirectional (bilateral)

switches SW1, SW2, SW3 and SW4 can be designed as parallel connections

of power MOSFETs (or IGBTs) with freewheeling diodes. This is shown

in Figure 3.5.

The operation of the electric circuit shown in this figure can be eluci-

dated as follows. Immediately prior to the time instant t = 0, transistors

Tr2 and Tr4 are in conducting (“on”) states, while transistors Tr1 and Tr3

are in “off” states. This results in negative polarity voltage V0 across the

nodes 1 and 2 and in the current flow in the direction opposite to the one

shown in Figure 3.5, which is consistent with Figure 3.4a. At time t = 0,

transistors Tr2 and Tr4 are turned off, while transistors Tr1 and Tr3 are

turned on, producing inversion of the polarity of the voltage V0 across the

nodes 1 and 2. However, transistors Tr1 and Tr3 cannot conduct the cur-

rent i(t) due to its direction at t = 0. To maintain the continuity of the

current through the inductor L, diodes D1 and D3 are turned on and they

form the closed path for freewheeling i(t). Physically, diodes D1 and D3 are

turned on because any (downward) disruption of continuity of i(t) through

L results in the induction of large voltage Ldi(t)dt of such polarity that will

force these diodes into the conduction state. As soon as the current i(t)

is reduced to zero and its direction is reversed during the half-cycle [0, T2 ],
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transistors Tr1 and Tr3 start to conduct this current. At time t = T
2 ,

transistors Tr1 and Tr3 are turned off, while transistors Tr2 and Tr4 are

turned on. However, Tr2 and Tr4 cannot conduct the positive current i(t)

(with the direction shown in Figure 3.5). To maintain the continuity of

the current through the inductor L, diodes D2 and D4 are turned on and

form the closed path for the freewheeling current i(t) until its direction is

reversed. The described conduction pattern is periodically repeated.

It turns out that the bidirectional switches shown in Figure 3.5 can be

used to control the width of rectangular pulses at each half-cycle. Partic-

ularly, the pattern of veq(t) shown in Figure 3.6 can be produced through

the appropriate switching. Indeed, immediately prior to the time instant

t = t1, transistors Tr1 and Tr3 are in “on” states, transistors Tr2 and Tr4

are in “off” states, and the current i(t) > 0, i.e., its direction coincides with

the one shown in Figure 3.5. At time t1, transistor Tr3 is turned off. Due

to the presence of the inductor, the continuity of i(t) must be maintained.

This is only possible if diode D2 is turned on and freewheels the current i(t)

through the closed path formed by the LR branch, diode D2 and transistor

Tr1. For this closed path, the voltage across the nodes 1 and 2 is equal to

zero as shown in Figure 3.6. At time T
2 + t0, transistor Tr1 is turned off,

while transistors Tr2 and Tr4 are turned on. This switching action causes

the voltage between nodes 1 and 2 to change to −V0 as shown in Figure

3.6. Then, at time T
2 + t1, when i(t) < 0 and i(t) has the direction opposite

to the one shown in Figure 3.5, transistor Tr4 is turned off, forcing diode

D1 to turn on, forming in this way the closed path for i(t) through D1, Tr2
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and the LR branch. This results in zero voltage across the nodes 1 and 2

as consistent with the plot of veq(t) in Figure 3.6. The described switching

pattern is periodically repeated.

The steady-state analysis of the electric circuit shown in Figure 3.2 with

veq(t) shown in Figure 3.6 can be carried out in a similar way as before.

Namely, it is easy to see that electric current i(t) during the half-cycle [0, T2 ]

can be represented as follows:

i(t) = A1e
−RL t, 0 ≤ t ≤ t0, (3.18)

i(t) =
V0

R
+A2e

−RL t, t0 ≤ t ≤ t1, (3.19)

i(t) = A3e
−RL t, t1 ≤ t ≤

T

2
, (3.20)

where A1, A2 and A3 are some constants. These constants are determined

from the boundary condition (3.4) as well as from the following continuity

conditions for electric current i(t) at t0 and t1:

i(t0−) = i(t0+), (3.21)

i(t1−) = i(t1+). (3.22)

Having determined A1, A2 and A3 from conditions (3.4), (3.21) and (3.22),

we arrive at the final expressions for i(t):

i(t) = −V0

R

e
Rt1
L − e

Rt0
L

1 + e−
RT
2L

e−
R
L (t+T

2 ), 0 ≤ t ≤ t0, (3.23)

i(t) =
V0

R

[
1− e

R
L (t1−T2 ) + e

Rt0
L

1 + e−
RT
2L

e−
R
L t

]
, t0 ≤ t ≤ t1, (3.24)

i(t) =
V0

R

e
Rt1
L − e

Rt0
L

1 + e−
RT
2L

e−
R
L t, t1 ≤ t ≤

T

2
. (3.25)

A plot of i(t) based on formulas (3.23), (3.24) and (3.25) is shown in Figure

3.7. The plot of vout(t) is a scaled (by R) version of the plot for i(t).

It is apparent from the above plot that i(t) is a half-wave symmetric

periodic function of t with period T . This period and, consequently, the

fundamental frequency of i(t) is controlled by the pattern of switching of

SW1, SW2, SW3 and SW4 that can be chosen appropriately. It is also clear

from the above plot as well as formulas (3.23), (3.24) and (3.25) that i(t) is

a piecewise exponential function of time t. This is true for the excitation of

the electric circuit in Figure 3.2 by any sequence of rectangular pulses. It

is also evident that the waveform of i(t) shown in Figure 3.7 has more re-

semblance to a sinusoidal function than the waveform shown in Figure 3.4.
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This suggests that by choosing a more elaborate sequence of rectangular

pulses for veq(t) much better resemblance of i(t) (and vout(t)) with a sinu-

soidal function can be achieved. The latter can indeed be accomplished by

using the pulse width modulation (PWM) technique discussed in the next

section.

3.2 Pulse Width Modulation (PWM)

Pulse width modulation is used in power electronics to approximate a low

frequency waveform by a sequence (train) of rectangular pulses whose width

is properly modulated (by the usually low frequency waveform). A large

number of PWM techniques have been developed over the years and dis-

cussed in literature (see, for instance, [23]). A common feature of most of

these techniques is the suppression of low-order harmonics in the Fourier

spectra of PWM voltages. This suppression is achieved at the expense of

some amplification of higher-order harmonics in the Fourier spectra. How-

ever, these higher-order harmonics are suppressed in the output voltage

vout(t) by an inductor in the LR branches of the inverters.

Next, we shall discuss below one simple version of PWM. In this version,

each half-cycle T
2 is subdivided into k equal time intervals and the centers



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 444

444 Fundamentals of Electric Power Engineering

ti of these time intervals are specified by the formula

ti =
T

2k

(
i+

1

2

)
, (i = 0, 1, 2, ..., k − 1). (3.26)

This pulse width modulated voltage consists of a sequence of rectangular

pulses centered at ti and whose widths are sinusoidally modulated:

∆ti =
mT

2k
sinωti, (3.27)

where as before

ω =
2π

T
, (3.28)

while m is called the modulation index (or depth of modulation) and usually

0 < m < 1. (3.29)

It is shown below that by varying m the peak value of the sinusoidal output

voltage can be controlled. An example of such pulse width modulated

voltage is presented in Figure 3.8 for k = 5. For PWM to be effective, k is

usually quite large,

k � 1. (3.30)

Such sequences of width modulated rectangular pulses can be obtained by

using specific switching patterns of transistors in the circuit shown in Figure

3.5. Some details of the realization of these switching patterns are discussed

later in this section.

Now, we will be concerned with the study of the Fourier spectra of PWM

voltages. It is clear from Figure 3.8 that veq(t) has two types of symmetry:

odd symmetry and half-wave symmetry. This implies (see Chapter 2 of Part

I) that the Fourier series for veq(t) contains only odd sine-type harmonics.

Namely,

veq(t) =
∞∑
n=1

V2n−1 sin(2n− 1)ωt, (3.31)

where

V2n−1 =
4

T

∫ T
2

0

veq(t) sin(2n− 1)ωtdt. (3.32)

The immediate purpose of the subsequent discussion is the evaluation of

the Fourier coefficients V2n−1. To this end and by taking into account that
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veq(t) is a sequence of k rectangular pulses of the same peak value V0, the

last formula can be written as follows:

V2n−1 =
4V0

T

k−1∑
i=0

∫

∆ti

sin(2n− 1)ωtdt. (3.33)

According to formulas (3.27) and (3.30), the widths of pulses ∆ti are quite

small. For this reason, we shall use the following approximation:
∫

∆ti

sin(2n− 1)ωtdt ≈ ∆ti sin(2n− 1)ωti. (3.34)

This is the only approximation that is present in our derivation. It is evident

that this approximation is quite accurate for small n when the period T2n−1

of sin(2n− 1)ωt is quite large in comparison with ∆ti:

T2n−1 =
T

2n− 1
� ∆ti =

mT

2k
sinωti. (3.35)

This approximation may not be as accurate when T2n−1 and ∆ti are com-

parable. This suggests that our derivation will lead to accurate results for

low-order sinusoidal harmonics in the Fourier series expansion (3.31).

Returning to our derivation and by substituting formula (3.34) into

equation (3.33), we find

V2n−1 ≈ 4V0

T

k−1∑
i=0

∆ti sin(2n− 1)ωti. (3.36)
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The last equation is further transformed by using expression (3.27) for ∆ti:

V2n−1 =
2mV0

k

k−1∑
i=0

sin(2n− 1)ωti sinωti. (3.37)

By recalling the trigonometric identity

sinα sinβ =
1

2
[cos(α− β)− cos(α+ β)] , (3.38)

the last formula can be transformed as follows:

V2n−1 =
mV0

k

[
k−1∑
i=0

cos(2n− 2)ωti −
k−1∑
i=0

cos 2nωti

]
. (3.39)

From formulas (3.26) and (3.28) follows that

ωti =
π

2k
(2i+ 1) (3.40)

and, consequently, the relation (3.39) can be written as

V2n−1 =
mV0

k

[
k−1∑
i=0

cos
(n− 1)π

k
(2i+ 1)−

k−1∑
i=0

cos
nπ

k
(2i+ 1)

]
. (3.41)

The subsequent derivation is based on the evaluation of the following two

sums:

S1 =
k−1∑
i=0

cos
(n− 1)π

k
(2i+ 1), (3.42)

S2 =
k−1∑
i=0

cos
nπ

k
(2i+ 1). (3.43)

It is apparent that the expression for S1 can be transformed as follows:

S1 = Re

[
k−1∑
i=0

ej
(n−1)π

k (2i+1)

]
= Re

[
ej

(n−1)π
k

k−1∑
i=0

ej
(n−1)2π

k i

]
. (3.44)

By introducing the notation

q = ej
(n−1)2π

k , (3.45)

we find that

k−1∑
i=0

ej
(n−1)2π

k i =
k−1∑
i=0

qi. (3.46)
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The last sum is a geometric series and, consequently,

k−1∑
i=0

qi =
1− qk

1− q
. (3.47)

Now, by combining formulas (3.45), (3.46) and (3.47), we derive

k−1∑
i=0

ej
(n−1)2π

k i =
1− ej(n−1)2π

1− ej
(n−1)2π

k

. (3.48)

By using the last expression in formula (3.44), we arrive at

S1 = Re

[
ej

(n−1)π
k

1− ej(n−1)2π

1− ej
(n−1)2π

k

]
. (3.49)

To conclude the evaluation of S1, it is important to distinguish two cases.

Case a) when n− 1 is not divisible by k, that is, for any natural number r

we have

n− 1 6= rk. (3.50)

The latter means that

q = ej
(n−1)2π

k 6= 1, (3.51)

while, on the other hand,

ej(n−1)2π = 1. (3.52)

Thus, according to formula (3.49) we find

S1 = 0. (3.53)

Case b) deals with those “rare” instances when n− 1 is divisible by k; this

means that such a natural number r can be found that

n− 1 = rk. (3.54)

The latter implies that

q = ej
(n−1)2π

k = ejr2π = 1. (3.55)

In this case, the fraction in formula (3.49) is not defined. It turns out that

in this case the sum S1 can be evaluated differently. Namely, from formulas

(3.55) and (3.46) we find

k−1∑
i=0

ej
(n−1)2π

k i = k. (3.56)
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Furthermore, according to (3.54), we have

ej
(n−1)π

k = ejrπ = (−1)r. (3.57)

By using the last two formulas in the expression (3.44), we obtain

S1 = (−1)rk. (3.58)

Thus, we have concluded the evaluation of S1. The evaluation of sum S2

can be now carried out based on the following observation: S1 can be trans-

formed into S2 by replacing n−1 by n. This implies that as far as the value

of S2 is concerned, there are two distinct cases:

Case a) when

n 6= rk (3.59)

and

S2 = 0, (3.60)

as well as

Case b) when

n = rk (3.61)

and

S2 = (−1)rk. (3.62)

It is easy to see that the condition (3.54) is equivalent to 2n− 1 = 2rk+ 1.

Consequently, we conclude that

if 2n− 1 = 2rk + 1, then S1 = (−1)rk. (3.63)

Similarly, the condition (3.61) is equivalent to 2n − 1 = 2rk − 1. Conse-

quently,

if 2n− 1 = 2rk − 1, then S2 = (−1)rk. (3.64)

It is also easy to see from (3.50), (3.53), (3.59) and (3.60) that

S1 = S2 = 0, if 2n− 1 6= 2rk ± 1. (3.65)

Now, from formulas (3.41), (3.42), (3.43), (3.63), (3.64) and (3.65) we con-

clude that



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 449

Inverters 449

Fig. 3.9

V2rk±1 = (±) (−1)rmV0, (3.66)

while

V2n−1 = 0 if 2n− 1 6= 2rk ± 1. (3.67)

In particular, for r = 0 from (3.66) we obtain

V1 = mV0. (3.68)

By using the last three formulas in equation (3.31), we find

veq(t) = mV0 sinωt+mV0

∞∑
r=1

(±) (−1)r sin(2rk ± 1)ωt. (3.69)

This means that the pulse width modulated voltage veq(t) has a “sparse-

twin” spectrum as illustrated in Figure 3.9. This spectrum is “sparse-twin”

because “most” of the terms in the Fourier series expansion (3.31) are equal

to zero, and those terms which are not equal to zero appear as pairs with

equal peak values. It is worthwhile to mention again that the derivation of

formula (3.69) has been based on approximation (3.34). For this reason, it

is of interest to compare the “sparse-twin” spectrum shown in Figure 3.9

with the spectrum numerically computed without using this approximation.

For the purpose of this comparison, such numerically computed spectra are

shown in Figures 3.10a and 3.10b for k = 10 and k = 50, respectively, where

m = 0.3.
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Fig. 3.10
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The numerically computed spectrum for k = 10 and m = 0.3 is given

in Table 1.

Table 1

2n− 1 V2n−1/V0 2n− 1 V2n−1/V0

1 0.299917 17 7.70548·10−3

3 2.49512·10−4 19 0.270925

5 4.80463·10−7 21 −0.264744

7 1.19418·10−9 23 −1.36372 · 10−2

9 3.36710·10−12 25 −2.84004 · 10−4

11 1.67320·10−11 27 −3.75066 · 10−6

13 4.85871·10−8 29 −3.76500 · 10−8

15 3.82028·10−5 31 −6.38020 · 10−8

Next, we shall use formula (3.69) in the analysis of the electric circuit

shown in Figure 3.2. We shall treat each term in (3.69) as an ac voltage

source of frequency (2rk ± 1)ω with r = 0, 1, ..., and by using the su-

perposition principle and ac steady-state analysis, we derive the following

expression for the current i(t):

i(t) =
mV0√

R2 + ω2L2
sin(ωt− ϕ)

+mV0

∞∑
r=1

(±) (−1)r√
R2 + (2rk ± 1)2ω2L2

sin
[
(2rk ± 1)ωt+ ϕ±r

]
,

(3.70)

where

tanϕ =
ωL

R
, (3.71)

tanϕ±r =
(2rk ± 1)ωL

R
. (3.72)

For sufficiently large number k of pulses (see (3.30)), we have

(2rk ± 1)ωL� ωL for all r ≥ 1, (3.73)

and all terms in the sum in formula (3.70) are small and can be neglected.

This leads to

i(t) ≈ mV0√
R2 + ω2L2

sin(ωt− ϕ) (3.74)
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and

vout(t) ≈
mV0R√
R2 + ω2L2

sin(ωt− ϕ). (3.75)

Thus, PWM leads to practically sinusoidal output voltage vout(t), and its

peak value can be controlled by varying the modulation index m.

Next, we shall briefly discuss how PWM voltages can be generated.

Both analog and digital techniques can be used for this purpose. One

analog technique is to generate a triangular (low-voltage) waveform v1(t)

with the frequency which is 2k times the inverter output frequency as well

as to generate a low-voltage sinusoidal (modulating) function v2(t) (see

Figure 3.11):

v1(t) = vtr(t), (3.76)

v2(t) = Vm sinωt. (3.77)

These low-voltage (and low-power) waveforms can be generated by using

operational amplifiers, for instance. The difference of these waveforms

vG(t) = v2(t)− v1(t) (3.78)

can be used as a voltage controlling the switching of the transistors in

the inverter circuit. For instance, this voltage vG(t) can be applied as a

gate voltage in the IGBTs which are frequently used in inverters. These
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transistors will be in “on” states and produce rectangular pulses with time

durations equal to the time intervals where

vG > 0. (3.79)

According to Figure 3.11, these time intervals ∆ti can be computed as

∆ti ≈ αVm sinωti. (3.80)

On the other hand,

α ≈ T/(2k)

Vtr
. (3.81)

By substituting the last formula in (3.80), we find

∆ti ≈
Vm
Vtr

T

2k
sinωti. (3.82)

It is apparent that the last formula coincides with formula (3.27) when the

modulation index is defined as

m =
Vm
Vtr

. (3.83)

Thus, by controlling the ratio of peak values of the sinusoidal and triangular

waveforms, the modulation index m and, consequently, the peak value of

the sinusoidal output voltage vout(t) (see (3.75)) can be controlled.

The presented discussion of pulse width modulation is based on the

frequency-domain technique and leads to the formulas (3.70), (3.74) and

(3.75) which are approximate in nature. The origin of the approximate

nature of these formulas can be traced back to equation (3.34). It turns

out that exact and explicit analytical expressions for i(t) and vout(t) can be

derived by using the time-domain technique, and this actually can be done

when veq(t) is any periodic sequence (train) of rectangular voltage pulses

with half-wave symmetry. Consider the positive half-cycle 0 < t < T
2 . For

this time interval veq(t) can be represented by the formula

veq(t) =

{
0, if t2j < t < t2j+1,

V0, if t2j+1 < t < t2j+2,
(3.84)

where j = 0, 1, ..., k and

t0 = 0, t2k+1 =
T

2
. (3.85)

It is clear that the current i(t) in the electric circuit shown in Figure 3.2 is

given by the equations

i(t) = A2j+1e
−RL t, t2j < t < t2j+1, (3.86)
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i(t) =
V0

R
+A2j+2e

−RL t, t2j+1 < t < t2j+2, (3.87)

where constants A2j+1 and A2j+2 must be determined from the continuity

of electric current i(t) at times t2j and t2j+1 as well as from the “antiperi-

odic” boundary condition (3.4). This leads, respectively, to the following

simultaneous equations:

A2 −A1 = −V0

R
e
Rt1
L , (3.88)

A3 −A2 =
V0

R
e
Rt2
L , (3.89)

...

A2j −A2j−1 = −V0

R
e
Rt2j−1

L , (3.90)

A2j+1 −A2j =
V0

R
e
Rt2j
L , (3.91)

...

A2k+1 −A2k =
V0

R
e
Rt2k
L (3.92)

and

A1 +A2k+1e
−RT2L = 0. (3.93)

By summing up all equations from (3.88) to (3.92), we find

A2k+1 −A1 =
V0

R

2k∑
j=1

(−1)je
Rtj
L . (3.94)

By solving the two simultaneous equations (3.93) and (3.94), we derive

A2k+1 =
V0

R

∑2k
j=1(−1)je

Rtj
L

1 + e−
RT
2L

, (3.95)

A1 = −V0

R

∑2k
j=1(−1)je

Rtj
L

1 + e−
RT
2L

e−
RT
2L . (3.96)

Having found A1, all other A-coefficients can be computed by using the

formula

Aj = A1 +
V0

R

j−1∑
n=1

(−1)ne
Rtn
L . (3.97)
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Thus, by means of the last three formulas as well as equations (3.86) and

(3.87), we can compute the current i(t) as well as the output voltage vout(t).

It is clear that this voltage is a function of V0, R, L and t1, t2, ..., t2k:

vout(t) = F (t, V0, R, L, t1, t2, ..., t2k). (3.98)

Examples of vout(t) computed by using the presented formulas are shown

in Figure 3.12 for k = 10 (Figure 3.12a) and k = 20 (Figure 3.12b).

It is interesting to point out that, in the time domain, the problem of

pulse width modulation can be stated as the following optimization prob-

lem: find times t1, t2, ..., t2k (and possibly R and L) such that the function
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vout(t) in (3.98) gives the best (in some sense) approximation to the desired

function. For inverters, the desired function is naturally chosen as

ṽout(t) = Vm sin(ωt− ϕ). (3.99)

In particular, the least square approximation can be chosen for the selection

of tj . In this case, the problem is reduced to the minimization of the

following integral functional:

min
(t1,...,t2k)

∫ T

0

|F (t, V0, R, L, t1, t2, ..., t2k)− Vm sin(ωt− ϕ)|2dt. (3.100)

This problem can be handled by using existing minimization techniques.

Further discussion of this matter is beyond the scope of this text.

3.3 Three-Phase Inverters; AC-to-AC Converters and AC

Motor Drives

Three-phase inverters are widely used in ac motor drives as well as in un-

interruptible ac power supplies for three-phase loads. Such inverters are

designed to produce sinusoidal three-phase ac outputs whose frequencies

and voltage peak values can both be controlled. It is possible to design

three-phase inverters as “parallel” connections of three single-phase invert-

ers discussed in the previous sections. In such designs, each of these three

inverters produces an ac output voltage of the same peak value and fre-

quency, but phase-shifted in time by 120◦ with respect to one another. The

latter can be achieved by using three identical reference sinusoidal volt-

ages v2(t) in pulse width modulation (see Figure 3.11) but phase-shifted

in time by 120◦. Although the described design is conceptually simple, it

often requires three-phase transformers as a link between such inverters and

three-phase loads as well as twelve switches. There exists another concep-

tual design in which a three-phase bridge with six switches is used. This

design is illustrated by Figure 3.13. In this figure, switches are assumed to

be bilateral (bidirectional). Such switches are designed in the same way as

discussed in the first section of this chapter, namely by using transistors

connected in parallel with freewheeling diodes. Different patterns of peri-

odical switching are possible in the circuit shown in Figure 3.13. First, we

discuss a simple (i.e., without pulse width modulation) pattern of switch-

ing that is repeated during each time period T . As before, the choice of

T determines the frequency of output ac three-phase voltages. In this sim-

ple pattern, the six switches continuously conduct during different time
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intervals of duration T
2 and at each instant of time there are only three

conducting switches. This switching pattern is fully specified by Table 2.

Next, we shall find voltages at nodes a, b and c (see Figure 3.13) at each

time interval in Table 2. It is apparent that during the time interval (0, T6 )

when switches SW1, SW3 and SW5 are in the “on” (conducting) state,

phases a and c are connected in parallel and then in series with the phase

b. This is illustrated by Figure 3.14. Since it is assumed that all three

phases have identical inductances and resistances, it is easy to conclude

from Figure 3.14 that

vaO(t) =
V0

3
, vbO(t) = −2V0

3
, vcO(t) =

V0

3
(3.101)

during the time interval (0, T6 ).

Next, we consider the time interval (T6 ,
T
3 ) during which (according

to Table 2) switches SW1, SW5 and SW6 are in the “on” (conducting)

state. This implies that during the above time interval phases b and c are
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Table 2

Time Interval Conducting Switches(
0, T6

)
SW1, SW3, SW5(

T
6 ,

T
3

)
SW1, SW5, SW6(

T
3 ,

T
2

)
SW1, SW2, SW6(

T
2 ,

2T
3

)
SW2, SW4, SW6(

2T
3 ,

5T
6

)
SW2, SW3, SW4(

5T
6 , T

)
SW3, SW4, SW5

Fig. 3.14

connected in parallel and then in series with phase a. This is illustrated by

Figure 3.15. Since all three phases have identical parameters, it is easy to



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 459

Inverters 459

Fig. 3.15

conclude from Figure 3.15 that

vaO(t) =
2V0

3
, vbO(t) = −V0

3
, vcO(t) = −V0

3
. (3.102)

By repeating the same line of reasoning as before, it is easy to find the values

of voltages vaO(t), vbO(t) and vcO(t) in all other time intervals. These values

are given in Table 3. These values are also graphically represented in Figure

3.16. It is evident from this figure that voltages vaO(t), vbO(t) and vcO(t)

are identical but progressively shifted in time by T
3 . Namely,

vbO(t) = vaO

(
t− T

3

)
, (3.103)

vcO(t) = vaO

(
t− 2T

3

)
. (3.104)

It is also apparent that at any instant of time t, we have

vaO(t) + vbO(t) + vcO(t) = 0. (3.105)

By using the time-domain technique and the same reasoning as in the

derivation of formulas (3.95), (3.96) and (3.97), the explicit analytical
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exponential-type expressions for ia(t) and vAO(t) = Ria(t) can be obtained.

A typical graph of vAO(t) computed this way is shown in Figure 3.17. It

is clear that vBO(t) and vCO(t) can be obtained from the graph in Figure

3.17 by shifting (translating) it in time by T
3 and 2T

3 , respectively. It is

noticeable that vAO(t) is somewhat close to a sinusoidal waveform. This

has been achieved by using only two-level (two-step) approximations for

positive (or negative) half-cycles of phase voltages (see Figure 3.16). The

closeness to sinusoidal waveforms can be improved by using multilevel in-

verters with a larger number of switches. However, three-phase inverters

with switching strategies based on pulse width modulation and having the

advantage of simultaneous control of frequency and peak value of output

voltages are preferable nowadays.

The pulse width modulation switching in three-phase inverters can be

accomplished in many different ways. One of these ways is very similar to

the switching discussed in the previous section and illustrated by Figure

3.11. It is based on comparison of the triangular waveform v1(t) with three

reference sinusoidal waveforms v
(a)
2 (t), v

(b)
2 (t) and v

(c)
2 (t) which are identical

but shifted in time with respect to one another by T
3 (or 120◦). Then, the

switches SW1 and SW4 in the bridge branch with node a (see Figure 3.13)

are controlled in the following way. If the sinusoid v
(a)
2 (t) is larger than

the triangular waveform, then switch SW1 is closed while switch SW4 is

open. On the other hand, if the sinusoid v
(a)
2 (t) is less than the triangular

waveform, then the switch SW1 is open, while the switch SW4 is closed.

The switches SW2 and SW5, SW3 and SW6 are controlled in the similar

way by comparing the triangular waveform with the sinusoids v
(b)
2 (t) and

v
(c)
2 (t), respectively. The described pattern of switching will result in the

Table 3

Time Interval vaO(t) vbO(t) vcO(t)(
0, T6

)
V0

3 − 2V0

3
V0

3(
T
6 ,

T
3

)
2V0

3 −V0

3 −V0

3(
T
3 ,

T
2

)
V0

3
V0

3
− 2V0

3(
T
2 ,

2T
3

)
−V0

3
2V0

3 −V0

3(
2T
3 ,

5T
6

)
− 2V0

3
V0

3
V0

3(
5T
6 , T

)
−V0

3
−V0

3
2V0

3
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trains of rectangular pulses for the potentials of nodes a, b and c. From these

trains of rectangular pulses, the trains of rectangular pulses for line voltages

vab(t), vca(t) and vbc(t) can be constructed and their Fourier analysis can

be performed in a similar way as discussed in the previous section. This

analysis will reveal that lower-order harmonics (except the fundamental) in

the Fourier spectra are suppressed, while the higher-order harmonics are

suppressed by phase inductances (see Figure 3.13).

It is worthwhile to point out that the problem of pulse width modulation



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 462

462 Fundamentals of Electric Power Engineering

Fig. 3.17

can also be treated in the time domain in a way similar to that which was

discussed at the end of the last section. In the time domain, we deal with

the solution of the following Kirchhoff equations (see Figure 3.13):

L
dia(t)

dt
+Ria(t) = va(t)− vO(t), (3.106)

L
dib(t)

dt
+Rib(t) = va

(
t− T

3

)
− vO(t), (3.107)

L
dic(t)

dt
+Ric(t) = va

(
t− 2T

3

)
− vO(t), (3.108)

ia(t) + ib(t) + ic(t) = 0, (3.109)

where va(t), va
(
t− T

3

)
and va

(
t− 2T

3

)
are the potentials of nodes a, b and

c, respectively, while vO(t) is the potential of node O.

By summing up equations (3.106), (3.107) and (3.108), we find

L
d

dt
[ia(t) + ib(t) + ic(t)] +R [ia(t) + ib(t) + ic(t)]

= va(t) + va

(
t− T

3

)
+ va

(
t− 2T

3

)
− 3vO(t). (3.110)

By taking into account formula (3.109) in the last equation, we obtain

vO(t) =
1

3

[
va(t) + va

(
t− T

3

)
+ va

(
t− 2T

3

)]
. (3.111)

By substituting the last expression into formulas (3.106), (3.107) and

(3.108) we end up with differential equations whose right-hand sides are ex-

pressed in terms of va(t) and its shifts. It is easy to see that these equations
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exhibit (as expected) symmetry under translation by T
3 . More importantly,

these equations can be analytically solved for any train of rectangular pulses

in va(t) using the technique described at the end of the previous section

and the solutions are exponential functions of switching times. By using

these analytical solutions, the problem of pulse width modulation can be

stated as the optimization problem of finding such switching times that

will provide (in some chosen sense) the best approximation for desired ac

three-phase voltages with respect to nodes A, B and C (see Figure 3.13).

At the end of this section, we shall briefly discuss ac-to-ac converters

and their application in ac motor drives. One very widely used way to con-

struct three-phase ac-to-ac converters is by cascading three-phase rectifiers

with three-phase inverters. Such a cascading is illustrated by Figure 3.18.

In this figure, there is an LC link between the rectifier and inverter, and

such cascades are often called dc link converters. In such converters usually

three-phase diode rectifiers are used, while the controllability of peak value

of ac output voltage (and its frequency) is achieved by using PWM invert-

ers. The link capacitors are used to maintain more or less constant input

voltages for the inverters because voltages across capacitors are continuous

functions of time and cannot change abruptly. The link inductors are used

to suppress higher-order (high-frequency) harmonics generated by pulse

width modulation in the inverters and, in this way, to isolate the rectifiers

and power systems from their detrimental effects. In some cases, the link

inductors are not used because they increase the overall size, weight and

cost of converters and may negatively affect the input voltages of inverters.

Ac-to-ac converters are used in ac motor drives for frequency control of

speed of induction and synchronous motors. First, we briefly consider the

case of induction motors. The electromagnetic torque-speed characteristics

of such motors for some fixed frequency f are shown in Figure 3.19 by the

continuous bold line 1 (consult on this matter Chapter 6 of Part II). It is
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Fig. 3.19

clear from this figure that the actual rotor speed n of the induction motor

is attained when the electromagnetic torque is equal to the load torque. It

is also clear that this speed is very close to the synchronous (i.e., stator

magnetic field) speed nsyn which is controlled by the frequency f of the

stator ac voltage according to the formula

n ≈ nsyn =
120f

p
, (3.112)

where p is the number of poles of the stator winding. As the frequency of

the power supply to the stator winding of the induction motor is increased

to some value f ′, this results in the increase of synchronous speed and in

the modification of the torque-speed characteristics as shown in Figure 3.19

by the dashed line 2. This, in turn, results in the increase of the mechanical

rotor speed of the induction motor

n′ ≈ n′syn =
120f ′

p
. (3.113)

The presented discussion clearly reveals the mechanisms of frequency con-

trol of speed of induction motors. In the case of synchronous motors (and,

specifically, in the case of synchronous motors with permanent magnets on

rotors) the rotor speed coincides with the synchronous speed,

n = nsyn =
120f

p
, (3.114)

which implies the exact controllability of speed of synchronous motors by

means of proper frequency variation. This exact controllability can be of
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importance in some applications as is the case, for instance, of spindle

motors of hard disk drives.

In the case of ac motors, the electromagnetic torques are determined

by stator magnetic fields. These fields are (roughly) proportional to the

magnetic flux linkages of the stator windings which, in turn, are determined

by the voltages applied to the stator windings according to the formula

v(t) =
dψ(t)

dt
, (3.115)

where ψ(t) stands for stator winding flux linkages.

In the case when

v(t) = Vm cosωt, (3.116)

from formula (3.115) we find

ψ(t) =
Vm
ω

sinωt (3.117)

and

ψm =
Vm
ω
. (3.118)

It is clear from the last formula that in order to maintain electromagnetic

torque more or less constant as the frequency is varied in order to control

the motor speed, the ratio in the right-hand side of formula (3.118) must

be maintained constant:

Vm
ω

= const. (3.119)

This is usually called the constant volts per hertz criterion.

Modern ac-to-ac (dc link) converters with pulse width modulation in

inverters usually meet this constant volts per hertz requirement because the

PWM techniques allow for efficient and simultaneous control of frequency

and peak value of ac three-phase output voltages.
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Chapter 4

DC-to-DC Converters (Choppers)

4.1 Buck Converter

In this chapter, dc-to-dc converters are discussed. These converters find

many applications in various areas of technology where several different

levels of dc voltage are (simultaneously) required. Integrated circuits and

electronic circuits, in general, are examples of such applications. There are

many different designs of choppers. In this chapter, we discuss only the most

basic and simplest versions of dc-to-dc converters with direct electric as well

as magnetic coupling connections between input and output terminals.

We start with the study of the buck (step-down) chopper whose electric

circuit is shown in Figure 4.1. This circuit contains five basic elements:

transistor Tr, freewheeling diode D, inductor L, capacitor C and resistor

R. The same five elements are used in the designs of boost and buck-

boost choppers discussed in subsequent sections. However, these elements

are differently interconnected in those choppers, resulting in their different

performance.

The operation of the circuit shown in Figure 4.1 can be described as

follows. Transistor Tr is periodically turned “on” and “off.” When the

transistor is “on,” the diode is reverse biased and “off,” and voltage V0 is

applied across terminals a and b. When the transistor is “off,” the free-

wheeling diode is automatically turned “on” to maintain the continuity of

the current iL(t) through the inductor. This implies that when the tran-

sistor is “off,” zero voltage appears across terminals a and b. Thus, the

voltage source V0, the transistor and the diode can be replaced by the

equivalent voltage source veq(t) as shown in Figures 4.2a and 4.2b, where

T is the period of repeated switching, while D is the fraction of this period

when the transistor is “on.” This quantity is termed the “duty factor.” It

467
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Fig. 4.1

Fig. 4.2

is evident from Figure 4.2b that as a result of periodic switching the input

dc voltage is “chopped” and transformed into a periodic sequence (train)

of identical rectangular pulses. This explains why dc-to-dc converters are

called choppers.

It turns out that the circuit shown in Figure 4.1 has two distinct modes

of operation: “continuous” mode when the current iL(t) is always strictly
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Fig. 4.3

positive,

iL(t) > 0, (4.1)

and the “discontinuous” mode when the current iL(t) reaches zero during

the time interval when the transistor is “off” and remains equal to zero

until the transistor is turned “on” again. This zero value is maintained

because the flow of the current iL(t) in the direction opposite to the one

shown in Figure 4.1 is prohibited by the diode. Thus, the discontinuous

mode of operation is characterized by the formula

iL(t) ≥ 0, (4.2)

and the equality in this formula is realized during some time interval when

the transistor is “off.”

It turns out that the performance of the chopper is quite different for

these two modes of operation. For this reason, these two modes are dis-

cussed below separately. We shall first start with the discussion of the

continuous mode of operation and we assume that the capacitance C is

large enough that the ripple of the voltage across this capacitor (as well as

across the resistor R) is negligible. In other words, it is assumed that

vC(t) = VC = const > 0. (4.3)

If this is not the case, then the chopper is not properly designed because the

output voltage Vout cannot be maintained constant. The assumption (4.3)

is used throughout this chapter in the analysis of all dc-to-dc converters.

Figure 4.2b suggests that the circuit in Figure 4.2a can be transformed

into two circuits shown in Figures 4.3a and 4.3b for the time intervals

(0, DT ) and (DT, T ), respectively. First, consider the time interval

0 < t < DT. (4.4)
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By using KVL for the circuit shown in Figure 4.3a, we find

L
diL(t)

dt
+ VC = V0, (4.5)

which implies that

diL(t)

dt
=
V0 − VC

L
= const. (4.6)

Similarly, for the time interval

DT < t < T, (4.7)

from the circuit shown in Figure 4.3b we conclude that

L
diL(t)

dt
+ VC = 0 (4.8)

and

diL(t)

dt
= −VC

L
< 0. (4.9)

Since we consider the steady-state performance of the buck chopper, the

values of iL(t) at the beginning and at the end of one period must be the

same. This implies that

iL(0) = iL(T ). (4.10)

The latter is only possible if the right-hand side of formula (4.6) is positive;

otherwise, iL(t) would be monotonically decreasing throughout the period

[0, T ] (see (4.9)) and the equality (4.10) is not possible. Thus, we conclude

that

diL(t)

dt
=
V0 − VC

L
> 0 and V0 > VC . (4.11)

The last inequality indicates that the chopper shown in Figure 4.1 is the

step-down (buck) chopper. Next, by integrating equations (4.6) and (4.9),

we find

iL(t) = Imin +
V0 − VC

L
t, 0 < t < DT, (4.12)

iL(t) = Imax −
VC
L

(t−DT ), DT < t < T. (4.13)

The plot of iL(t) is shown in Figure 4.4. From the last two formulas as well

as Figure 4.4, we find

Imax = Imin +
V0 − VC

L
DT, (4.14)

Imin = Imax −
VC
L

(1−D)T, (4.15)
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which is equivalent to

Imax − Imin =
V0 − VC

L
DT, (4.16)

Imax − Imin =
VC
L

(1−D)T. (4.17)

From the last two formulas follows that

V0 − VC
L

DT =
VC
L

(1−D)T, (4.18)

which leads to

Vout = VC = DV0. (4.19)

It is clear from the last relation that the circuit shown in Figure 4.1 is

indeed a step-down (buck) converter and that the output voltage can be

fully controlled by varying the duty factor D. The desired variations of

the duty factor can be accomplished by using the pulse width modulation

technique similar to the one discussed in the previous chapter. Namely, the

switching of the transistor can be controlled by the difference between a

reference dc voltage v2(t) and a triangular carrier waveform voltage v1(t)

(see Figure 4.5). It is clear that by changing the level of v2(t) the width

of the rectangular pulses (and duty factor D) can be effectively controlled.

The input-output (transfer) relation has been derived under the assumption

of the continuous mode of operation, that is, when the strict inequality (4.1)

is valid. This inequality is valid if and only if

Imin > 0. (4.20)
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Fig. 4.5

Next, we shall discuss under what constraints on inductance L or duty

factor D the last inequality is valid. To find these constraints, we shall

carry out the analysis of electric currents in the chopper. According to

KCL, we have

iC(t) = iL(t)− iR(t). (4.21)

It is apparent that

iR(t) =
VC
R

=
DV0

R
(4.22)

and

iC(t) = C
dvC(t)

dt
. (4.23)

By substituting the last two formulas into equation (4.21), we find

C
dvC(t)

dt
= iL(t)− DV0

R
. (4.24)

Now, we shall integrate both sides of the last equation over one period T .

This yields

C

∫ T

0

dvC(t)

dt
dt =

∫ T

0

iL(t)dt− DV0

R
T. (4.25)

It is easy to see that∫ T

0

dvC(t)

dt
dt = vC(T )− vC(0) = 0, (4.26)
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because at the steady state vC(t) (as all other quantities) is a periodic

function of time with period T . Furthermore, the second integral in formula

(4.25) is equal to the area under the plot of iL(t) for one period T . From

this fact and Figure 4.4, we find∫ T

0

iL(t)dt = IminT +
Imax − Imin

2
T, (4.27)

or ∫ T

0

iL(t)dt =
Imax + Imin

2
T. (4.28)

By using formulas (4.26) and (4.28) in equation (4.25), we derive

Imax + Imin =
2DV0

R
. (4.29)

On the other hand, from formulas (4.17) and (4.19) follows that

Imax − Imin =
(1−D)DT

L
V0. (4.30)

By adding equations (4.29) and (4.30), we arrive at

Imax = DV0

(
1

R
+

(1−D)T

2L

)
. (4.31)

Similarly, by subtracting equations (4.29) and (4.30), we find

Imin = DV0

(
1

R
− (1−D)T

2L

)
. (4.32)

From the last formula we conclude that the inequality (4.20) holds and,

consequently, the continuous mode of operation is realized if

1

R
− (1−D)T

2L
> 0. (4.33)

It is easy to see that the last inequality is fulfilled for any value of duty

factor D if the inductance L in the circuit shown in Figure 4.1 is sufficiently

large, namely if

L > L̃ =
RT

2
. (4.34)

On the other hand, if the inductance L in the converter circuit is smaller

than L̃, then the constraint can be imposed on the duty factor D to achieve
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Fig. 4.6

the inequality (4.33) and, consequently, to guarantee the continuous mode

of operation. From inequality (4.33), we find

D > D̃ = 1− 2L

RT
. (4.35)

Formulas (4.31) and (4.32) can be used to fully describe the currents in

the converter circuit. Indeed, by substituting these formulas into equations

(4.12) and (4.13), we find explicit expressions for iL(t) for time intervals

when the transistor is “on” and “off,” respectively. The value of the current

iR(t) is given by formula (4.22). Now, by using formulas (4.12), (4.13) and

(4.22) in equation (4.21), we end up with the following expressions for the

current iC(t) through the capacitor:

iC(t) = Imin +
(1−D)V0

L
t− DV0

R
, if 0 < t < DT, (4.36)

iC(t) = Imax −
DV0

L
(t−DT )− DV0

R
, if DT < t < T. (4.37)

The plot of iC(t) is presented in Figure 4.6, where

iC(0) = −iC(DT ) = −V0D(1−D)T

2L
, (4.38)

as can be found from formulas (4.31), (4.32), (4.36) and (4.37).

By using the last figure, the ripple ∆Q of the electric charge of capacitor

C can be computed as follows:

∆Q =

∫ (1+D)T
2

DT
2

iC(t)dt =
iC(DT )

2

T

2
=
V0D(1−D)T 2

8L
. (4.39)
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From the last formula, the ripple ∆VC of the voltage across the capacitor

C can be evaluated as

∆VC =
∆Q

C
=
V0D(1−D)T 2

8LC
=
V0D(1−D)

8f2LC
, (4.40)

where f = 1
T is the frequency of switching. By taking into account formula

(4.19), we further derive

∆VC
VC

=
1−D
8f2LC

. (4.41)

The last formula clearly reveals that the level of ripple in VC and, con-

sequently, in the output voltage Vout can be effectively suppressed by the

proper choice of energy storage elements L and C as well as by increasing

the switching frequency f . It is also evident from the last formula that

there exists a trade-off between the switching frequency and the values of

the energy storage elements.

Now, we proceed to the discussion of the discontinuous mode of oper-

ation of the buck chopper. In this mode of operation, the current iL(t)

through the inductor is strictly positive only during the portion D1T (with

D1 > D) of the switching cycle, i.e.,

iL(t) > 0, if 0 < t < D1T, (4.42)

and this current is equal to zero during the rest of the cycle, that is,

iL(t) = 0, if D1T < t < T. (4.43)

By using the same reasoning as before (see the derivation of equations (4.6)

and (4.9)), we find

diL(t)

dt
=
V0 − VC

L
, if 0 < t < DT, (4.44)

diL(t)

dt
= −VC

L
, if DT < t < D1T. (4.45)

By integrating the last two equations, we obtain

iL(t) =
V0 − VC

L
t, if 0 < t < DT, (4.46)

iL(t) = Imax −
VC
L

(t−DT ), if DT < t < D1T. (4.47)

By using the last two equations and formula (4.43), the plot of iL(t) can be

constructed as shown in Figure 4.7. It is clear from the last two formulas
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Fig. 4.7

as well as from the last figure that

Imax =
V0 − VC

L
DT, (4.48)

Imax =
VC
L

(D1 −D)T. (4.49)

These are two equations with respect to three unknowns Imax, VC and

D1. Thus, we need an additional equation that can be derived by using

the power balance condition that the average per period T input power

Pin supplied by the input voltage source is equal to the average output

power Pout dissipated across the resistor R. Power Pin can be computed as

follows:

Pin =
1

T

∫ DT

0

V0iL(t)dt =
V0

T

∫ DT

0

iL(t)dt =
V0ImaxD

2
. (4.50)

On the other hand,

Pout =
V 2
C

R
. (4.51)

Since

Pin = Pout, (4.52)

from formulas (4.50) and (4.51) we derive

V0ImaxD

2
=
V 2
C

R
. (4.53)

Now, we have three equations (4.48), (4.49) and (4.53) with respect to three

unknowns Imax, VC and D1. Our immediate goal is to find the expression
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for the output voltage Vout = VC . To this end, we substitute formula (4.48)

into the last equation to arrive at

V0(V0 − VC)D2T

2L
=
V 2
C

R
. (4.54)

This relation can be further transformed as

V 2
C +

D2RT

2L
V0VC −

D2RT

2L
V 2

0 = 0. (4.55)

We next introduce the non-dimensional parameter

k =
D2RT

4L
(4.56)

and write the quadratic equation (4.55) in the form(
VC
V0

)2

+ 2k

(
VC
V0

)
− 2k = 0. (4.57)

By solving the last equation and taking into account that VC
V0

is positive,

we find

VC
V0

= −k +
√
k2 + 2k, (4.58)

or

VC
V0

= k

(√
1 +

2

k
− 1

)
. (4.59)

It is apparent from the last formula that the performance of the buck chop-

per in the discontinuous mode of operation is quite different from its per-

formance in the continuous mode. Indeed, in the discontinuous mode, the

output voltage depends not only on D as in the case of the continuous

mode but on R, L and T as well, as it is evident from formulas (4.56)

and (4.59). If the inductance L in the converter circuit is smaller than L̃

(see formula (4.34)), then depending on the value of D the continuous or

discontinuous modes of operation can be realized. This is illustrated by

Figure 4.8, where line 1 corresponds to the continuous mode (see formula

(4.19)), while curve 2 computed by using equation (4.59) corresponds to

the discontinuous mode. The value D̃ is defined by formula (4.35).
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Fig. 4.8

Fig. 4.9

4.2 Boost Converter

In this section, we shall discuss the boost (step-up) converter in which the

controllable output dc voltage is larger than the input dc voltage. The

electric circuit of this converter is shown in Figure 4.9. The operation

of this circuit can be described as follows. Transistor Tr is periodically

turned “on” and “off.” Consider one period [0, T ] of this switching. When

the transistor is “on” during the time interval

0 < t < DT, (4.60)

the diode is reverse biased and in the “off” state. This implies that during

this time interval the circuit shown in Figure 4.9 is reduced to the circuit

shown in Figure 4.10a. When the transistor is “off” during the time interval

DT < t < T, (4.61)

the freewheeling diode is turned “on” to maintain the continuity of the

current iL(t) through the inductor. This implies that for this time interval
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Fig. 4.10

the circuit shown in Figure 4.9 is reduced to the one shown in Figure 4.10b.

The boost chopper, similar to the buck chopper, has two distinct modes of

operation: continuous mode and discontinuous mode. We shall first discuss

the continuous mode of operation when the inequality (4.1) is valid for any

instant of time. It will be assumed in our discussion that the capacitance C

in the electric circuit shown in Figure 4.9 is large enough that the ripple of

the voltage across the capacitor is negligible and the relation (4.3) is quite

accurate.

By using KVL for the circuit shown in Figure 4.10a, we find that

L
diL(t)

dt
= V0, (4.62)

which implies that

diL(t)

dt
=
V0

L
> 0, if 0 < t < DT. (4.63)

Similarly, by using KVL for the circuit shown in Figure 4.10b, we conclude

that

L
diL(t)

dt
+ VC = V0, (4.64)

which leads to

diL(t)

dt
=
V0 − VC

L
, if DT < t < T. (4.65)

Since we are interested in the steady-state performance of the boost chop-

per, from formulas (4.63) and (4.65) we conclude that

V0 − VC
L

< 0. (4.66)

Otherwise, iL(t) would be a monotonically increasing function of time

throughout the entire period [0, T ], which is not possible at the steady state



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 480

480 Fundamentals of Electric Power Engineering

Fig. 4.11

when the equality (4.10) must be satisfied. The inequality (4.66) implies

that

VC > V0 (4.67)

and the chopper shown in Figure 4.9 is the boost (step-up) converter.

Next, by integrating equations (4.63) and (4.65), we obtain

iL(t) = Imin +
V0

L
t, if 0 < t < DT, (4.68)

iL(t) = Imax +
V0 − VC

L
(t−DT ), if DT < t < T. (4.69)

The plot of iL(t) is shown in Figure 4.11. From the last two formulas as

well as Figure 4.11 we derive

Imax − Imin =
V0

L
DT, (4.70)

Imax − Imin =
VC − V0

L
(1−D)T. (4.71)

From relations (4.70) and (4.71) follows that

V0

L
DT =

VC − V0

L
(1−D)T, (4.72)

which is equivalent to

V0D = (VC − V0)(1−D). (4.73)

From the last formula we find the following transfer (input-output) relation:

Vout = VC =
V0

1−D
. (4.74)
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It is clear from the last formula that the circuit shown in Figure 4.9 is the

boost chopper and that by controlling the duty factor D the output voltage

can be effectively controlled. It is also clear from the last formula that

lim
D→1

VC =∞. (4.75)

The latter is clearly impossible. This unrealistic performance of the circuit

shown in Figure 4.9 is due to the idealization of the inductor in this circuit

when its resistance is entirely neglected. The detailed analysis, which ac-

counts for this resistance, suggests that formula (4.74) may be valid for the

following range of variation of the duty factor:

0 ≤ D ≤ 0.8. (4.76)

The latter implies that

1 ≤ Vout
V0
≤ 5. (4.77)

The input-output (transfer) relation (4.74) has been derived under the tacit

assumption that

Imin > 0, (4.78)

which must be satisfied for the continuous mode of operation. Next, we

shall discuss under what constraints on inductance L or duty factor D the

last inequality is valid. To do this, we shall derive the explicit expression

for Imin. To this end, we shall invoke the principle of power balance which

implies that the average per period T input power Pin supplied to the

converter by the voltage source V0 is equal to the average output power

Pout dissipated across the resistor R:

Pin = Pout. (4.79)

Power Pin can be computed as follows:

Pin =
1

T

∫ T

0

V0iL(t)dt =
V0

T

∫ T

0

iL(t)dt. (4.80)

The last integral is equal to the area under the plot of iL(t) for one period

T . From this fact and Figure 4.11, we find∫ T

0

iL(t)dt = IminT +
Imax − Imin

2
T =

Imax + Imin
2

T. (4.81)

By using the last formula in equation (4.80), we obtain

Pin =
V0(Imax + Imin)

2
. (4.82)
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On the other hand, according to formula (4.74), we derive

Pout =
V 2
C

R
=

V 2
0

(1−D)2R
. (4.83)

By substituting the last two formulas into equation (4.79), we arrive at

V0(Imax + Imin)

2
=

V 2
0

(1−D)2R
, (4.84)

which is tantamount to

Imax + Imin =
2V0

(1−D)2R
. (4.85)

Now, by adding equations (4.85) and (4.70), we find

Imax = V0

[
1

(1−D)2R
+
DT

2L

]
. (4.86)

Similarly, by subtracting equation (4.70) from (4.85), we obtain

Imin = V0

[
1

(1−D)2R
− DT

2L

]
. (4.87)

From the last formula we conclude that the inequality (4.78) holds and the

continuous mode of operation is realized if

1

(1−D)2R
− DT

2L
> 0. (4.88)

It is easy to see that the last inequality is fulfilled for any value of duty

factor D if the inductance L in the circuit shown in Figure 4.9 is sufficiently

large, namely if

L > L̃ =
RT

2
max

0≤D≤0.8

[
D(1−D)2

]
. (4.89)

On the other hand, if the inductance L in the converter circuit is smaller

than L̃, then the constraint can be imposed on the duty factor D to achieve

the inequality (4.88) and, consequently, to guarantee the continuous mode

of operation. Indeed, from inequality (4.88) we find

D(1−D)2 <
2L

RT
. (4.90)

To find the values of D for which the inequality (4.90) is valid, consider the

function

f(D) = D(1−D)2. (4.91)
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Fig. 4.12

It is clear that this function is positive for 0 < D < 1 and that f(0) =

f(1) = 0. Next, it is apparent that

f ′(D) = (1− 3D)(1−D). (4.92)

The latter implies that f ′(D) = 0 for D = 1
3 and that f(D) achieves its

maximum value for this value of D. This maximum value is

max
0≤D≤0.8

[
D(1−D)2

]
= f

(
1

3

)
=

4

27
. (4.93)

Now, the plot of f(D) can be easily constructed and it is represented by the

continuous line in Figure 4.12. By using this figure, it is easy to conclude

that the inequality (4.90) is valid and, consequently, the continuous mode

of operation of the boost chopper is realized for the values of D that are

within the intervals

0 < D < D′, (4.94)

D′′ < D < 0.8, (4.95)

where D′ and D′′ are two real roots of the cubic equation

f(D) = D(1−D)2 =
2L

RT
. (4.96)

It is also clear from Figure 4.12 that if

2L

RT
>

4

27
, (4.97)
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then the continuous mode of operation is realized for any D. The last

inequality can also be written as

L > L̃ =
2

27
RT. (4.98)

By taking into account formula (4.93), it is easy to see that the inequalities

(4.89) and (4.98) are identical.

Now, we shall proceed to the discussion of the discontinuous mode of

operation of the boost chopper. In this mode of operation, the current

iL(t) through the inductor is strictly positive only during some portion

D1T (with D1 > D) of the switching cycle, that is,

iL(t) > 0, if 0 < t < D1T, (4.99)

and the current iL(t) is equal to zero during the rest of the switching cycle,

that is,

iL(t) = 0, if D1T < t < T. (4.100)

This zero value of the current iL(t) is maintained because the flow of the

current iL(t) in the direction opposite to the one shown in Figure 4.9 is

prohibited by the diode.

By using the same reasoning as before (see the derivation of equation

(4.63) and (4.65)-(4.66)), we find

diL(t)

dt
=
V0

L
> 0, if 0 < t < DT, (4.101)

diL(t)

dt
=
V0 − VC

L
< 0, if DT < t < D1T. (4.102)

By integrating the last two equations, we derive that

iL(t) =
V0

L
t, if 0 < t < DT, (4.103)

iL(t) = Imax +
V0 − VC

L
(t−DT ), if DT < t < D1T. (4.104)

By using the last two equations and formula (4.100), iL(t) can be plotted

as shown in Figure 4.13. It is apparent from the last two formulas as well

as from Figure 4.13 that

Imax =
V0

L
DT, (4.105)

Imax =
VC − V0

L
(D1 −D)T. (4.106)
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Fig. 4.13

These are two equations with respect to three unknowns Imax, VC and D1.

An additional equation is needed and this equation can be derived by using

the power balance condition

Pin = Pout, (4.107)

where Pin and Pout have the same meaning as before.

It is clear that

Pin =
1

T

∫ T

0

V0iL(t)dt =
V0

T

∫ D1T

0

iL(t)dt. (4.108)

The last integral can be evaluated by using Figure 4.13 as follows:∫ D1T

0

iL(t)dt =
ImaxD1T

2
. (4.109)

From the last two equations we find

Pin =
V0ImaxD1

2
. (4.110)

On the other hand,

Pout =
V 2
C

R
. (4.111)

From formulas (4.107), (4.110) and (4.111) we find

V0ImaxD1

2
=
V 2
C

R
. (4.112)

Thus, now we have three equations (4.105), (4.106) and (4.112) for three

unknowns Imax, VC and D1. Our immediate goal is to find the expression
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Fig. 4.14

for the output voltage Vout = VC . To this end, we shall first derive the

formula for D1 by using equations (4.105) and (4.106). It is clear from

these equations that

V0

L
DT =

VC − V0

L
(D1 −D)T. (4.113)

By using simple algebraic transformation, we find from the last relation

that

D1 =
VC

VC − V0
D. (4.114)
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Next, by substituting formulas (4.105) and (4.114) into equation (4.112),

we end up with

V 2
0 VCD

2T

2L(VC − V0)
=
V 2
C

R
, (4.115)

which leads to

V 2
0

D2RT

2L
= (VC − V0)VC . (4.116)

By introducing the non-dimensional parameter

k =
D2RT

4L
, (4.117)

equation (4.116) can be written as the following quadratic equation:(
VC
V0

)2

− VC
V0
− 2k = 0. (4.118)

By solving the last equation and taking into account that VC
V0

is positive,

we find

VC
V0

=
1

2

(
1 +
√

1 + 8k
)
. (4.119)

It is apparent from the last formula that the performance of the boost

chopper in the discontinuous mode of operation is quite different from its

performance in the continuous mode. Indeed, in the continuous mode the

output voltage depends only on the duty factor D (see formula (4.74)),

while in the discontinuous mode the output voltage depends on k, which is

a function of D, R, L and T . If the inductance L in the converter circuit

is smaller than L̃ given by formula (4.98), then depending on the value of

duty factor D the continuous or discontinuous mode of operation can be

realized. This is illustrated by Figure 4.14a, in which the lines marked “1”

and “3” correspond to continuous mode (see formulas (4.94) and (4.95))

while the line marked “2” corresponds to the discontinuous mode. It must

be remarked that the curves “1” and “3” are computed by using formula

(4.74), while the curve “2” is computed by using formulas (4.117) and

(4.119). The values D′ and D′′ are computed by solving cubic equation

(4.96).

It was mentioned before that the transfer relation (4.74) for continuous

mode of operation was derived by neglecting the small resistance RL of the

inductor and this is the reason why formula (4.74) fails for duty factors D

close to one. The transfer relations that account for small values of RL are
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Fig. 4.15

Fig. 4.16

shown in Figure 4.14b for different values of ratio RL/R. These transfer

relations have been computed by using the formula given in the problem

52. This formula as well as the curves in Figure 4.14b suggest that the

small parameter RL may have a strong effect on the performance of the

boost converter.

4.3 Buck-Boost Converter

In this section, we shall discuss the buck-boost converter whose controllable

output dc voltage can be below or above the input dc voltage. The electric

circuit of this converter is shown in Figure 4.15. The operation of this

circuit can be described as follows. Transistor Tr is periodically turned

“on” and “off.” Consider one period [0, T ] of this switching. When the

transistor is “on” during the time interval

0 < t < DT, (4.120)

the diode is reverse biased and in the “off” state. This means that during

this time interval the circuit shown in Figure 4.15 is reduced to the circuit

shown in Figure 4.16a. On the other hand, when the transistor is “off”

during the time interval

DT < t < T, (4.121)
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the freewheeling diode is turned “on” to maintain the continuity of the

current iL(t) through the inductor. This means that for this time interval

the circuit shown in Figure 4.15 is reduced to the one shown in Figure 4.16b.

The buck-boost chopper has two distinct modes of operation: continuous

mode and discontinuous mode. We shall first discuss the continuous mode

when the inequality (4.1) is valid for any instant of time. It will be assumed

throughout our discussion that the capacitance C in the electric circuit

shown in Figure 4.15 is sufficiently large that the ripple of the voltage across

the capacitor can be neglected and the relation (4.3) is quite accurate.

By using KVL for the circuit shown in Figure 4.16a, we find that

L
diL(t)

dt
= V0 (4.122)

and

diL(t)

dt
=
V0

L
> 0, if 0 < t < DT. (4.123)

Similarly, by using KVL for the circuit shown in Figure 4.16b, we arrive at

L
diL(t)

dt
+ VC = 0, (4.124)

which leads to

diL(t)

dt
= −VC

L
< 0, if DT < t < T. (4.125)

By integrating equations (4.123) and (4.125) we respectively obtain

iL(t) = Imin +
V0

L
t, if 0 < t < DT, (4.126)

iL(t) = Imax −
VC
L

(t−DT ), if DT < t < T. (4.127)

The last two equations lead to the plot of iL(t) shown in Figure 4.17. From

the last two equations as well as Figure 4.17, we find

Imax − Imin =
V0

L
DT, (4.128)

Imax − Imin =
VC
L

(1−D)T. (4.129)

It is apparent from the last two formulas that

V0

L
DT =

VC
L

(1−D)T, (4.130)
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Fig. 4.17

which leads to the following transfer (input-output) relation:

Vout = VC =
D

1−D
V0. (4.131)

It is clear from the last formula that

lim
D→1

VC =∞. (4.132)

As in the case of the boost chopper, this unrealistic performance is due to

the idealization of the inductor in the circuit in Figure 4.15 when its finite

resistance is completely neglected. The detailed analysis, which accounts

for this resistance, suggests that formula (4.131) is valid for the following

range of variation of the duty factor:

0 ≤ D ≤ 0.8. (4.133)

Next, it is easy to see that F (D) = D
1−D is a monotonically increasing

function of D. Indeed,

F ′(D) =
1

(1−D)2
> 0. (4.134)

Furthermore,

F (0) = 0 and F (0.5) = 1. (4.135)

This means that

F (D) < 1, if 0 ≤ D < 0.5, (4.136)
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and, consequently, according to the transfer relation (4.131)

0 ≤ VC = Vout < V0, if 0 ≤ D < 0.5. (4.137)

This implies that the circuit shown in Figure 4.15 operates as a buck (step-

down) chopper when the duty factor is varied between 0 and 0.5.

On the other hand, it is clear that

F (D) > 1, if 0.5 < D ≤ 0.8, (4.138)

and according to formula (4.131)

V0 < VC = Vout ≤ 4V0. (4.139)

Thus, the circuit shown in Figure 4.15 operates as a boost (step-up) chopper

when the duty factor D is varied between 0.5 and 0.8.

The transfer relation (4.131) is illustrated by Figure 4.18. This transfer

relation has been derived under the assumption that

Imin > 0, (4.140)

which is satisfied when the continuous mode of operation is realized. Now,

we shall discuss under what constraints on inductance L and duty factor

D the last inequality is actually valid. To do this, we shall first find the

explicit expression for Imin. To this end, we shall invoke the principle of

power balance

Pin = Pout, (4.141)

where Pin and Pout have the same meaning as before.



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 492

492 Fundamentals of Electric Power Engineering

It is clear that

Pin =
1

T

∫ DT

0

V0iL(t)dt =
V0

T

∫ DT

0

iL(t)dt. (4.142)

It is apparent from Figure 4.17 that∫ DT

0

iL(t)dt =
Imax + Imin

2
DT. (4.143)

From the last two formulas follows that

Pin =
Imax + Imin

2
V0D. (4.144)

On the other hand, from the relation (4.131) we find

Pout =
V 2
C

R
=

D2V 2
0

(1−D)2R
. (4.145)

By using the last two formulas in equation (4.141), we end up with

Imax + Imin = V0
2D

(1−D)2R
. (4.146)

By adding equations (4.128) and (4.146), we obtain

Imax = V0D

[
1

(1−D)2R
+

T

2L

]
. (4.147)

On the other hand, by subtracting equation (4.128) from (4.146), we arrive

at

Imin = V0D

[
1

(1−D)2R
− T

2L

]
. (4.148)

From the last formula can be inferred that the inequality (4.140) holds and

the continuous mode of operation is realized if

1

(1−D)2R
− T

2L
> 0. (4.149)

It is easy to see that the last inequality is valid for any value of duty factor

D if the inductance L is sufficiently large, namely if

L > L̃ =
RT

2
. (4.150)

If the inductance L in the converter circuit is smaller than L̃, then con-

straints can be imposed on the duty factor D to fulfill the inequality (4.149)
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and in this way to guarantee the continuous mode of operation. Indeed,

from inequality (4.149) we find that

2L

RT
> (1−D)2, (4.151)

which implies that

D > D̃ = 1−
√

2L

RT
. (4.152)

Thus, if the duty factor is chosen to satisfy the condition (4.152), then the

continuous mode of operation is realized. Furthermore, it is clear that the

last inequality is valid for any D if the inductance L satisfies the condition

(4.150).

Now, we shall turn to the discussion of the discontinuous mode of op-

eration of the buck-boost chopper. In this mode of operation, the current

iL(t) through the inductor is strictly positive only during some portion D1T

(with D1 > D) of the switching cycle,

iL(t) > 0, if 0 < t < D1T, (4.153)

and the current iL(t) is equal to zero during the rest of the switching cycle,

iL(t) = 0, if D1T < t < T. (4.154)

This zero value of the current iL(t) is maintained because the flow of iL(t)

in the direction opposite to the one shown in Figure 4.15 is prohibited by

the diode.

Next, by using the same reasoning as before (see the derivation of equa-

tions (4.123) and (4.125)), we find

diL(t)

dt
=
V0

L
> 0, if 0 < t < DT, (4.155)

diL(t)

dt
= −VC

L
< 0, if DT < t < D1T. (4.156)

By integrating equations (4.155) and (4.156), we obtain

iL(t) =
V0

L
t, if 0 < t < DT, (4.157)

iL(t) = Imax −
VC
L

(t−DT ), if DT < t < D1T. (4.158)

By using the last equations and formula (4.154), function iL(t) can be

plotted as shown in Figure 4.19. It is apparent from formulas (4.157) and
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Fig. 4.19

(4.158) as well as from Figure 4.19 that

Imax =
V0

L
DT, (4.159)

Imax =
VC
L

(D1 −D)T. (4.160)

These are two equations with respect to three unknowns Imax, VC and D1.

Thus, an additional equation is needed, and this equation can be derived

from the power balance condition

Pin = Pout. (4.161)

It is clear that

Pin =
V0

T

∫ DT

0

iL(t)dt. (4.162)

The last integral can be evaluated by using Figure 4.19 as follows:∫ DT

0

iL(t)dt =
Imax

2
DT. (4.163)

From the last two equations follows that

Pin =
V0ImaxD

2
. (4.164)

On the other hand, we have

Pout =
V 2
C

R
. (4.165)
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By using formulas (4.164) and (4.165) in equation (4.161), we end up with

V0ImaxD

2
=
V 2
C

R
. (4.166)

As a result, we have now three equations (4.159), (4.160) and (4.166) for

three unknowns Imax, VC and D1. Our immediate goal is to find the ex-

pression for the output voltage Vout = VC . This can be accomplished by

substituting formula (4.159) into equation (4.166), which leads to

V 2
0 D

2T

2L
=
V 2
C

R
. (4.167)

By introducing, as before, the non-dimensional parameter

k =
D2RT

4L
, (4.168)

from equation (4.167) we finally derive

Vout = VC = V0

√
2k. (4.169)

The last two formulas can be effectively used to predict the output voltage

Vout in the case of the discontinuous mode of operation.

If the inductance L in the converter circuit is less than L̃ given by

formula (4.150), then depending on the value of the duty factor D the

continuous or discontinuous mode of operation can be realized. This is

illustrated by Figure 4.20 where the curve marked “1” corresponds to the

continuous mode of operation, while the curve marked “2” corresponds to

the discontinuous mode of operation. Curves “1” and “2” are computed by

using formulas (4.131) and (4.169), respectively. The value of D̃ is found

by using equation (4.152).

4.4 Flyback and Forward Converters

In this section, we discuss “flyback” and “forward” dc-to-dc converters. In

these converters, the input and output terminals are electrically isolated.

This is achieved by using magnetic coupling between these terminals. For

this reason, such choppers are often called indirect converters. These types

of converters are often used in various switching power supplies.

We begin with the discussion of the flyback converter. The electric

circuit of this converter is shown in Figure 4.21. Similar to the converters

discussed in the previous sections, the operation of the flyback converter
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Fig. 4.20

Fig. 4.21

is based on periodic switching of transistor Tr. Before proceeding to the

analysis of the circuit shown in Figure 4.21 and the derivation of the transfer

(input-output) relation, it is worthwhile to discuss two aspects important

for understanding the performance of the flyback converter.

The first aspect is related to the dot convention. The essence of the dot

convention can be stated as follows: a monotonically increasing (in time)

current entering the dotted terminal of one coil results in such induced

voltage across the terminals of the other coil that its dotted terminal is at

positive potential, i.e., higher potential than the undotted terminal. This

dot convention also implies that, vice versa, a monotonically decreasing

(in time) current entering the dotted terminal of one coil results in such

induced voltage across the terminals of the other coil that its dotted ter-

minal is at negative potential. The dot convention is introduced to avoid

the ambiguity in voltage polarities which may exist due to different coil
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Fig. 4.22

winding directions. This ambiguity is usually removed by the preliminary

calibration of magnetically coupled coils for the purpose of identification

and assignment of dotted terminals. This calibration can be accomplished

experimentally without any prior knowledge of relative winding directions

of the coils. This calibration can also be accomplished theoretically by us-

ing the right-hand rule. It is clear that the desired assignment of dotted

terminals can always be achieved by the appropriate choice of coil winding

directions. In circuit analysis, it is tacitly assumed that the proper calibra-

tion has been performed and resulted in the assigned dot notations. The

essence of the dot convention is illustrated by Figure 4.22a in the case when

di1(t)

dt
> 0, (4.170)

and by Figure 4.22b in the case when

di1(t)

dt
< 0. (4.171)

The second aspect is related to the generalization of the principle of

continuity of electric current through an inductor. This continuity is always

valid for a single inductor and it follows from the principle of continuity of

energy stored in the magnetic field of the inductor. In the case of a single

inductor, this magnetic energy is given by the formula

wm(t) =
Li2(t)

2
(4.172)

and its continuity implies the continuity of i(t). In the case of two coupled

inductors, the continuity of electric current through each inductor may not

be preserved. However, the more fundamental principle of the continuity in

time of magnetic energy cannot be violated and must always be preserved.

Otherwise, it leads to the possibility of infinite power sources, which are
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Fig. 4.23

not possible and have never been observed. In the case of two coupled

inductors, the magnetic energy is given by the formula

wm(t) =
L1i

2
1(t)

2
+
L2i

2
2(t)

2
+Mi1(t)i2(t). (4.173)

Now, to illustrate how the currents through individual inductors may be

discontinuous while the continuity of magnetic energy is preserved, consider

the following situation, which is quite relevant to the performance of the

flyback converter. Let us assume that the current i1(t) through the first

inductor is not equal to zero during some time interval (0, t0), while the

current i2(t) through the second inductor is equal to zero during the same

interval (see Figure 4.23). Furthermore, we assume that at time t0 the

current i1(t) is suddenly reduced to zero (as a result of some switching, for

instance). Then, the current i2(t) must be suddenly increased to maintain

the continuity of magnetic energy. Such sudden changes are illustrated in
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Figure 4.23. Indeed, according to the principle of continuity of magnetic

energy, we have

wm(t0−) = wm(t0+). (4.174)

By using formula (4.173), we find that

wm(t0−) =
L1i

2
1(t0−)

2
(4.175)

and

wm(t0+) =
L2i

2
2(t0+)

2
. (4.176)

By substituting the last two formulas into equation (4.174), we easily find

that sudden changes in currents i1(t) and i2(t) are related by the formula

i2(t0+)

i1(t0−)
=

√
L1

L2
. (4.177)

Now, we are equipped to proceed to the analysis of the electric circuit of

the flyback converter shown in Figure 4.21. As before, it will be assumed in

this analysis that the capacitance C is large enough to result in negligible

ripples of voltage across the capacitor. In other words, it will be assumed

that

vC(t) = VC = const > 0. (4.178)

As mentioned before, the transistor Tr is periodically turned “on” and

“off.” Consider one period [0, T ] of this switching. When the transistor is

“on” during the time interval

0 < t < DT, (4.179)

according to KVL we find

L1
di1(t)

dt
= V0 (4.180)

and

di1(t)

dt
=
V0

L1
> 0. (4.181)

This implies that the monotonically increasing in time current i1(t) enters

the dotted terminal of the first coil. According to the dot convention, this

results in such induced voltage in the second coil that its dotted terminal

has a positive potential while its other terminal has a negative potential.
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This means that the diode D is reverse biased and in the “off” state. Con-

sequently,

i2(t) = 0. (4.182)

Now, by integrating equation (4.181), we derive

i1(t) = I
(1)
min +

V0

L1
t, (4.183)

and

I(1)
max − I

(1)
min =

V0

L1
DT. (4.184)

Next, we consider the time interval

DT < t < T, (4.185)

when the transistor Tr is turned “off.” During the turning-off process, the

current i1(t) is monotonically decreased from its value I
(1)
max immediately

before the switching to zero immediately after switching:

i1(t) = 0. (4.186)

According to the dot convention, this monotonic decrease in time of i1(t)

results in such induced voltage across the terminals of the second coil that

its dotted terminal is at negative potential, while its other terminal has

positive potential. This means that the diode D is forward biased and

turned “on” during the switching. This diode will remain in the “on” state

after switching to maintain the continuity of magnetic energy.

According to KVL, we find

L2
di2(t)

dt
+ VC = 0, (4.187)

di2(t)

dt
= −VC

L2
< 0. (4.188)

By integrating the last equation from DT to t, we derive

i2(t) = I(2)
max −

VC
L2

(t−DT ) (4.189)

and

I(2)
max − I

(2)
min =

VC
L2

(1−D)T. (4.190)

When the transistor Tr is turned “on” again at time T , this results in

monotonically increasing current i1(t) which induces the voltage across the
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Fig. 4.24

terminals of the second coil of such polarity that the diode D is reverse

biased and turned “off.” This implies that during the second period (as

well as during all subsequent periods) the time variations of i1(t) and i2(t)

are periodically repeated. These time variations are illustrated by Figure

4.24. Next, we shall relate currents I
(1)
max and I

(1)
min to I

(2)
max and I

(2)
min,

respectively, by using the principle of continuity of magnetic energy at time

instants t = DT and t = T . According to this principle, we have

wm(DT−) = wm(DT+), (4.191)

which leads to

L1

(
I

(1)
max

)2

2
=
L2

(
I

(2)
max

)2

2
. (4.192)
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From the last formula, we derive

I(2)
max =

√
L1

L2
I(1)
max. (4.193)

Similarly, we find

wm(T−) = wm(T+), (4.194)

which according to Figure 4.24 implies that

L2

(
I

(2)
min

)2

2
=
L1

(
I

(1)
min

)2

2
. (4.195)

From the last formula, we derive

I
(2)
min =

√
L1

L2
I

(1)
min. (4.196)

By substituting formulas (4.193) and (4.196) into equation (4.190), we ob-

tain √
L1

L2

(
I(1)
max − I

(1)
min

)
=
VC
L2

(1−D)T. (4.197)

Now, by substituting formula (4.184) into the last equation, we end up with√
L1

L2

V0

L1
DT =

VC
L2

(1−D)T, (4.198)

which can be further transformed to result in

VC =

√
L2

L1

D

1−D
V0. (4.199)

When two coils are wound around the same leg of a ferromagnetic core,

then the following formulas for inductances are valid (see Chapter 3 of Part

I):

L1 =
N2

1

Rme
, L2 =

N2
2

Rme
. (4.200)

Usually, coils are wound around a one-leg (toroidal) core. In this case, the

equivalent magnetic reluctance is given by the formula

Rme =
`

µA
, (4.201)

where A and ` are the cross-sectional area and average length of the core,

respectively. From formulas (4.200), we find√
L2

L1
=
N2

N1
, (4.202)
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Fig. 4.25

and the formula (4.199) can be written as

Vout = VC =
N2

N1

D

1−D
V0. (4.203)

It is apparent from the last formula that the dependence of the output

voltage on the duty factor D is the same as in the case of the buck-boost

converter. For this reason, this converter is often called a buck-boost-derived

converter. It is also apparent from the last formula that by using a large

ratio of N2 to N1 high output voltages Vout can be achieved. The value

of this high voltage is controlled by the switching of the transistor (i.e.,

controlling D) on the low-voltage side of the converter.

Now, we consider the forward converter. This converter has three coils

which are wound around the same ferromagnetic core. The electric circuit

of this converter is shown in Figure 4.25. As before, the operation of this

converter is based on periodic switching of the transistor Tr. Consider one

period [0, T ] of this switching. When the transistor is “on” during the time

interval

0 < t < DT, (4.204)

diode D3 is reverse biased and, consequently,

i3(t) = 0. (4.205)

By using KVL, we also find that

L1
di1(t)

dt
= V0 (4.206)

and

di1(t)

dt
=
V0

L1
> 0. (4.207)
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This implies that the monotonically increasing in time current i1(t) enters

the dotted terminal of the first coil. According to the dot convention, this

results in such induced voltage in the second coil that its dotted terminal

has a high (positive) potential, while its other terminal has a low (negative)

potential. This means that the diode D1 is forward biased and “on,” while

the diode D2 is reverse biased and “off.” Now, by using KVL, we find

L
di2(t)

dt
+ VC = V2, (4.208)

where VC is the voltage across the capacitor which, as before, is assumed

to be constant and positive (see (4.178)), while V2 is the induced voltage

across the terminals of the second coil. To find this voltage, we remark that

if the leakage flux is neglected then all turns of the first and second coils

are linked by the same flux Φ(t). Consequently,

V0 = N1
dΦ(t)

dt
, (4.209)

while

V2 = N2
dΦ(t)

dt
. (4.210)

From the last two formulas we find

V2 =
N2

N1
V0. (4.211)

By substituting formula (4.211) into equation (4.208), we end up with

di2(t)

dt
=

N2

N1
V0 − VC
L

. (4.212)

Now, consider the time interval

DT < t < T (4.213)

when the transistor is turned off. This turning-off results in a forced sudden

monotonic decrease in time of current i1(t) from some positive value before

the switching to zero value after switching. According to the dot convention,

this monotonic decrease in time of i1(t) results in such induced voltage

across the terminals of the second coil that its dotted terminal is at negative

potential while its other terminal has positive potential. This implies that

the diode D1 is reverse biased and “off,” while the diode D2 is forward

biased and “on.”

By using KVL, we find

L
di2(t)

dt
+ VC = 0, (4.214)
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Fig. 4.26

and

di2(t)

dt
= −VC

L
< 0. (4.215)

Since we consider the steady-state (periodically repeated) performance of

the forward converter, the last inequality implies that the right-hand side

of equation (4.212) must be positive,

di2(t)

dt
=

N2

N1
V0 − VC
L

> 0. (4.216)

By integrating equations (4.216) and (4.215) we respectively find

i2(t) = I
(2)
min +

N2

N1
V0 − VC
L

t, if 0 < t < DT, (4.217)

i2(t) = I(2)
max −

VC
L

(t−DT ), if DT < t < T. (4.218)

A typical plot of i2(t) is shown in Figure 4.26. From equations (4.217) and

(4.218) we respectively derive

I(2)
max − I

(2)
min =

N2

N1
V0 − VC
L

DT, (4.219)

I(2)
max − I

(2)
min =

VC
L

(1−D)T. (4.220)

It is easy to conclude from the last two formulas that
N2

N1
V0 − VC
L

DT =
VC
L

(1−D)T, (4.221)



September 8, 2014 11:16 World Scientific Book - 9in x 6in modified˙ws-book9x6 page 506

506 Fundamentals of Electric Power Engineering

which after simple transformations leads to the following transfer (input-

output) relation:

Vout = VC =
N2

N1
DV0. (4.222)

It is apparent from the last formula that the dependence of the output

voltage on the duty factor D is the same as in the case of the buck converter.

This explains why this converter is often called a buck-derived converter.

It is also apparent from the last formula that by using a large ratio of N2

to N1 high output voltages Vout can be achieved. The value of high output

voltage is controlled by the switching of the transistor Tr on the low-voltage

side, i.e., by controlling the duty factor D.

It turns out that there are some constraints on the range of variation of

D. To find these constraints, we consider the intended function of the third

coil in the operation of the forward converter. This function is to “catch”

and “extinguish” the magnetic flux in the ferromagnetic core during the

time interval when the transistor Tr is “off.” For this reason, this winding is

sometimes called the “catch winding.” It would be better to call it the “flux-

resetting” winding. If this magnetic flux is removed by the end of period

[0, T ], then at the beginning of the next period the magnetic conditions of

the core will be the same as at the beginning of the previous period, i.e.,

flux resetting is achieved. Otherwise, the build-up of magnetic flux in the

core will occur and the converter cannot function properly.

During the turning-off of the transistor Tr, we find in accordance with

the dot convention that the voltage across the terminals of the third coil

is induced with such polarity that the dotted terminal is at appreciable

negative potential. This implies that the diode D3 is forward biased and

the flow of the current i3(t) commences. The value of this current at the

moment of switching is such that the continuity of magnetic energy is main-

tained. To find the flux resetting conditions, it is convenient to write the

KVL equation for the loop formed by the input voltage source and the third

coil in the form

N3
dΦ(t)

dt
= −V0. (4.223)

The negative sign in the last equation reflects the fact that the direction of

the current i3(t) is such that instantaneous input power is negative. This

means that the energy stored in the magnetic field of the core during the

time interval when the transistor Tr is “on” is being returned to the source

during the time interval when the transistor Tr is “off.” This energy return
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implies the reduction in core magnetic field and in core magnetic flux, which

is consistent with the negative sign in the last equation. By integrating the

last equation from DT to t, we find

Φ(t) = Φ(DT )− V0

N3
(t−DT ). (4.224)

From formula (4.209) follows that

Φ(DT ) =
V0

N1
DT. (4.225)

By combining the last two formulas, we obtain

Φ(t) =
V0

N1
DT − V0

N3
(t−DT ). (4.226)

The flux resetting will occur if

Φ(t0) = 0 for t0 < T. (4.227)

This means according to equation (4.226) that

V0

N1
DT =

V0

N3
(t0 −DT ). (4.228)

Since t0 < T , from the last formula we obtain

DT

N1
<

(1−D)T

N3
, (4.229)

which after simple transformations leads to the inequality

D <
N1

N1 +N3
. (4.230)

Thus, the flux resetting occurs only if the duty factor does not exceed the

right-hand side in the last formula. In the somewhat typical case when

N1 = N3, the flux resetting condition is

D < 0.5. (4.231)

This concludes the discussion of the forward converter.
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Problems

(1) What is the subject of power electronics? What are the main types

of power converters?

(2) What is the function of energy storage elements in power convert-

ers? Explain the trade-off between switching speed and overall size,

weight and cost of power converters.

(3) What are the main engineering applications of power electronics?

(4) Give a concise summary of the basic facts and mathematical re-

lations of the drift-diffusion model for mobile carrier transport in

semiconductors.

(5) Give a concise summary of the basic facts related to the physics of

p-n junctions at equilibrium.

(6) By using the drift-diffusion model derive the Shockley equation

(1.72). What is the physical origin of reverse (negative) saturation

current Is?

(7) What is a unique design feature of power diodes resulting in in-

crease of their breakdown voltage?

(8) Describe the design and the principle of operation of the n+pn

BJT. Explain why the base in BJT devices is narrow.

(9) Explain how the BJT can be used as a current-controlled switch in

the common emitter configuration. What are the advantages and

disadvantages of the BJT as a switch?

(10) Explain the design and the principle of operation of the thyristor

(SCR) by using the two-transistor model. Draw and explain the

(idealized) I-V curve for the thyristor.

(11) Describe the design and the principle of operation of the MOSFET

and how it can be used as a voltage-controlled switch. What are

the advantages and disadvantages of the MOSFET as a switch in

comparison with the BJT?

509
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(12) What are the unique design features of the power MOSFET?

(13) Explain the design and principle of operation of the IGBT. What

is the main advantage of the IGBT in comparison with the power

MOSFET?

(14) Explain what snubber circuits are and give examples of such cir-

cuits.

(15) Explain what resonant switches are and how they can be used

for “soft” switching of semiconductor devices. Give examples of

resonant switches used for zero-current switching (ZCS) and zero-

voltage switching (ZVS).

(16) Carry out the analysis of the single-phase rectifier with RL load

(see Figure 2.1a or 2.1b) by using the frequency-domain technique.

(17) Explain how the performance of the center-tapped transformer rec-

tifier shown in Figure 2.6 is different from the performance of the

rectifier shown in Figure 2.1a.

(18) What is the physical mechanism of suppressing ripple in the output

voltage of the rectifier shown in Figure 2.9? Explain the physics of

operation of this rectifier.

(19) Carry out the analysis of the center-tapped transformer rectifier

shown in Figure 2.15 by using the time-domain technique.

(20) Suppose you want to build a power converter to provide 10 V dc to

a device by using an available single-phase ac voltage of 120 V rms.

What turns ratio should you use in the center-tapped transformer

rectifier shown in Figure 2.6 to achieve this?

(21) Analyze the single-phase bridge rectifier with RLC load shown in

Figure 2.17 by using the frequency-domain technique. Explain how

the suppression of ripple is improved by the presence of two energy

storage elements (inductor and capacitor).

(22) Suppose you have a three-phase power system from which three dc

voltage supplies are being powered. One dc supply employs a three-

phase diode bridge rectifier (Figure 2.23), another uses a three-

phase, three-pulse diode rectifier (Figure 2.20), and the remaining

dc supply uses a single-phase bridge rectifier (Figure 2.1) connected

to one of the three phases. By using just oscilloscope measurements

across the terminals of the RL branches, how might it be possible

to determine which rectification scheme is used?

(23) Analyze the three-phase rectifier shown in Figure 2.20 by using the

frequency-domain technique.
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(24) Analyze the three-phase bridge rectifier (Figure 2.23) by using the

frequency-domain technique.

(25) Derive the output voltage expression for the twelve-pulse three-

phase diode rectifier shown in Figure 2.26 in the case when the

ripple is small.

(26) Explain the function of the freewheeling diode in the phase-

controlled rectifier shown in Figure 2.27.

(27) Analyze the center-tapped transformer phase-controlled rectifier

shown in Figure 2.30.

(28) Carry out the analysis of the rectifier shown in Figure 2.31 by using

the frequency-domain technique.

(29) Suppose you have a three-phase power system from which two dc

voltage supplies are being powered. One dc supply employs a three-

phase diode bridge rectifier (Figure 2.23). The other dc supply uses

a three-phase SCR rectifier (Figure 2.31). By using just oscilloscope

measurements across the terminals of the RL branches, how might

it be possible to determine which rectification scheme is used?

(30) Draw the circuit of the single-phase bridge inverter and explain

how by the appropriate switching the polarity across the terminals

of the RL branch can be periodically inverted.

(31) Explain why bidirectional (bilateral) switches are needed for the

operation of bridge inverters and how these switches are designed.

(32) Explain how the bidirectional switches shown in Figure 3.5 can

be used to control the width of rectangular pulses in single-phase

bridge inverters.

(33) What is pulse width modulation (PWM) and what are the generic

features of Fourier spectra of PWM voltages?

(34) Describe the main steps in the derivation of formula (3.69) for the

Fourier series expansion of PWM voltages. What is the significance

of the depth of modulation?

(35) What are the main functions of the inductor in the single-phase

inverter (see Figure 3.5) with PWM?

(36) How can PWM voltages be generated? (Explain how switches are

controlled to achieve PWM voltages.)

(37) Explain how the time-domain technique can be used to analyze

single-phase inverters with PWM. Derive formulas (3.95), (3.96)

and (3.97).

(38) How can the problem of PWM be stated as an optimization prob-

lem in the time domain?
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(39) Draw the circuit of the three-phase bridge inverter and explain the

pattern of switching that produces the voltage waveforms shown in

Figure 3.16.

(40) Describe a pattern of switching that results in three-phase PWM

voltages.

(41) Explain how ac-to-ac converters can be designed by cascading

three-phase rectifiers with three-phase inverters.

(42) Explain how ac-to-ac converters can be used in ac motor drives for

frequency control of speed of induction and synchronous motors.

(43) Explain what the “constant volts per hertz” criterion is in ac motor

drives and why it is needed.

(44) What are the major types of dc-to-dc converters (choppers)?

(45) What are two distinct regimes of chopper operation?

(46) What is the main assumption made in the analysis of choppers?

(47) Suppose you are considering to build a buck chopper with param-

eters L = 20 mH and R = 50 Ω with the switching rate of 1 kHz.

You want to output a dc voltage that is one-fourth of the input

dc value. In what mode of operation will the chopper operate and

what duty factor is necessary to achieve the desired output voltage?

(48) Suppose you want to build a power converter to provide 10 V dc to

a device by using an available single-phase ac voltage of 120 V rms.

You use a single-phase bridge rectifier to convert the ac voltage to

dc. Design a buck chopper circuit cascaded with the rectifier to

achieve the desired dc voltage. How does such a device compare to

the center-tapped transformer-based design considered in question

20?

(49) Explain how the duty factor can be controlled in choppers.

(50) Formula (4.19) has been derived by neglecting the resistance RL
of the inductor. Demonstrate that in the case when this resistance

is not neglected but RLT � L, formula (4.19) is replaced by the

following:

Vout = VC = V0
D

1 + RL
R

.

(Hint: use two-term Taylor expansions for exponentials.)

(51) Perform the ripple analysis (i.e., derive the formula for ∆VC/VC)

for the boost converter in the case of continuous current mode of

operation.
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(52) Demonstrate that in the case when the resistance RL of the induc-

tor is not neglected but RLT � L, formula (4.74) is replaced by

the following:

Vout = VC = V0
1−D

(1−D)2 + RL
R

.

(53) Perform the ripple analysis (i.e., derive the formula for ∆VC/VC)

for the buck-boost converter in the case of continuous current mode

of operation.

(54) Demonstrate that in the case when the resistance RL of the induc-

tor is not neglected but RLT � L, formula (4.131) is replaced by

the following:

Vout = VC = V0
D(1−D)

(1−D)2 + RL
R

.

(55) Produce the plots of Vout/V0 as a function of D for various small

values of ratio RL/R.

(56) Draw the circuit of the flyback converter and explain its principle

of operation.

(57) Formula (4.199) has been derived for the flyback converter under

the tacit assumption that I
(1)
min > 0 (and, consequently, I

(2)
min > 0).

Derive the condition (i.e., inequalities) for L2 (or L1) under which

this assumption (and, consequently, formula (4.199)) is valid.

(58) Perform the analysis of the flyback converter in the case when the

small resistances of the two inductors are taken into account.

(59) Draw the circuit and explain the principle of operation of the for-

ward converter. What is the purpose of the “flux resetting” winding

with L3 (see Figure 4.25)? Explain the reason for the limitation

on the range of duty factor values (see formula (4.231)).

(60) Compare and contrast the operation of the flyback and forward

converters. Explain when you might want to use one converter

instead of the other.
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as a switch, 371
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power BJT, 375

boost converter, 478
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duty factor, 481

buck converter, 467
continuous mode, 469
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buck-boost converter, 488
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duty factor, 490

capacitor, 7, 15
phasor diagram, 24

COMFET, 384
complex power, 149
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constant volts per hertz criterion, 465
continuation method, 291
continuity of magnetic energy, 497
core flux, 61
core losses, 111

dc-to-dc converters, 467
delta connection of loads, 145
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width, 362
deregulation, 137
diffusion current, 352
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power diode, 367
direct axis, 232
direct axis main reactance, 264
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mutual inductance, 83
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Newton-Raphson method, 281
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periodic boundary conditions, 51

orthogonality conditions, 33

p-n junction, 358
built-in potential, 360, 364
current, 364
diode, 364
saturation current, 365

Park theory, 267
per-phase analysis, 144
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permanent magnet, 90

ideal, as a nonideal magnetomotive
force, 94

permanent magnet materials, 89
permanent magnets, 87
phase voltages, 140
phasor diagrams, 22

generic, 23
phasor technique, 13
phasors

complex frequency, 20
power factor, 150

adjustment, 150
power flow analysis, 275
power flow equations, 279
pulse width modulation (PWM), 443

Fourier spectra, 444
generation of PWM voltages, 452
modulation index, 444
sparse-twin spectrum, 449
time-domain analysis, 453

quadrature axis, 232
quadrature axis main reactance, 262

reactive power, 149
rectifier

center-tapped transformer, 397,
406

harmonics, 397, 406
phase-controlled, 423
single-phase full-wave diode bridge,

389
three-phase, 411
with RC and RLC loads, 400

reference direction, 3
reference polarity, 3
reluctance, 68
resistor, 4, 14

phasor diagram, 23
resonance, 19, 149
resonant switch, 387
ripple, 6, 8, 43, 345

suppression, 47, 50

saturation, 101
separatrix, 302
sequence networks, 180, 188

negative-sequence, 185
positive-sequence, 184
zero-sequence, 183

small parameters, 13
snubbers, 385
soft magnetic materials, 87
solar generation, 134
star connection, 138
stray losses, 200
superposition principle, 41
swing equation, 293
symmetrical components, 171

negative-sequence, 172
positive-sequence, 171
zero-sequence, 173

symmetry
even, 35
half-wave, 36
odd, 35
simplifications of Fourier series, 37

synchronous condenser, 273
synchronous generator, 229
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(P, V )-source, 235
air gap, 232, 236
armature reaction magnetic field,

230, 233, 236
design of stator windings, 245
equivalent circuit, 257
frequency, 235
ideal cylindrical rotor machine, 236
leakage reactance, 255
load angle, 269
main reactance of stator phase

winding, 254
mmf of ideal winding, 238
open-circuit test, 258
phase portrait of rotor dynamics,

301
power, 268
principle of operation, 233
rotor, 230

cylindrical, 230
salient pole, 231, 259

short-circuit test, 258
static stability, 258, 270
stator, 229
stator winding, 229
transient stability, 293
two-reactance theory, 259
V curves, 272
winding mmf, 247

synchronous motor, 236
synchronous speed, 233, 235

terminal relations, 3
Thevenin theorem, 159
three-phase circuits, 138
three-phase power, 156
thyristor, 375
time-domain technique, 31, 51
transformer, 199

coupled circuit equations, 206
eddy current losses, 214
equivalent circuit, 212
ferrite core, 215
ideal, 200
open-circuit test, 221
principle of operation, 200
short-circuit test, 222
three-phase, 223

transformer steel, 119
transmission capacity, 136
turns ratio, 202

unbalanced loads, 144
uniformly rotating magnetic fields,

144

valence band, 347
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